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TRANSCRIPTIONAL, EPIGENETIC, AND SIGNAL EVENTS IN ANTIFOLATE 

THERAPEUTICS 

By Alexandra Christin Racanelli, B.S 

A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor 
of Philosophy at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2009 
 

Major Advisor:  Dr. Richard G. Moran, PhD 
Professor, Department of Pharmacology and Toxicology 

 
 

 
 A targeted approach to the development of antifolate therapies has been sought for 

many years.  Central to the success of such development is an understanding of the 

molecular mechanisms dictating the sensitivity of cells to antifolates and the fundamental 

differences of these processes between normal and neoplastic phenotypes.  This 

dissertation addressed transcriptional mechanisms and cell-signaling events responsible for 

the efficacy of antifolate therapies.  Transcriptional processes and cell signaling pathways 

are often aberrant in neoplastic tissues, providing a potential point of distinction between a 

normal and neoplastic cellular state. 
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 Folylpolyglutamate synthetase (FPGS) catalyzes the formation of poly-γ-glutamate 

derivatives of folates and antifolates, which permits intracellular retention and 

accumulation of these compounds. The mouse fpgs gene uses two distant promoters to 

produce functionally distinct isozymes in a tissue-specific pattern.  We questioned how the 

two promoters were differentially controlled.  An analysis of DNA methylation and histone 

post-translational modifications across the length of the mouse fpgs gene showed that 

epigenetic mechanisms contributed to the tissue-specific control of the upstream (P1), but 

not the downstream (P2) fpgs promoter.  RNAPII complexes and general transcription 

factors were present over P1 only when P1 was transcribed, but these components were 

present over P2 in most tissues, and promoter-proximal pausing was evident in brain.  

Clear promoter occlusion was found over P2 in liver.  These studies concluded that tissue-

specific coordination of dual promoters required multiple interacting controls. 

     The mammalian target of rapamycin (mTOR) controls protein translation 

initiation, and is central to a cell-signaling pathway rich in tumor suppressor and oncogenic 

proteins.  mTOR dysregulation is a common feature of several human cancers and inhibition 

of this protein has been sought as an ideal cancer drug target.  We have determined that 

antifolates inhibiting the two folate-dependent steps of purine synthesis (GART or AICART) 

activate AMP-dependent protein kinase (AMPK) and inhibit mTOR.  The mechanism of 

AMPK stimulation appears to be mediated by either nucleotide depletion (GART inhibitors), 

or ZMP accumulation (AICART inhibitors).  These studies discovered a new mechanism for 

antifolates that surprisingly defines them as molecularly targeted therapeutics.
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Chapter 1: Introduction and Overview 

 

 Folates are forms of the essential water-soluble B vitamin, folic acid.  Humans 

deficient in folates can suffer from a number of serious pathologies including birth 

defects, such as neural tube defects and cleft palate, cardiovascular disease, and 

megaloblastic anemia (229).  The folic acid molecule consists of a pteridine moiety 

linked at carbon 6 by a methylene bridge to p-aminobenzoylglutamic acid.  Within the 

cell, folic acid is reduced to 5,6,7,8-tetrahydrofolate (THF), and THF and N5 and N10-

substituted reduced folates are the metabolically active forms of this vitamin (Figure 1-1) 

(9, 167, 199). Folate metabolism is compartmentalized in mammals between the cytosol 

and the 

Figure 1-1.  Structure of 5,6,7,8-Tetrahydrofolate (THF). 
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mitochondria, and early evidence showed that folic acid distributes equally between these 

two compartments in rat liver (47).    Cellular folates represent a family of structurally 

related cofactors that play critical roles in one-carbon transfer reactions required for 

purine nucleotide and thymidylate synthesis, as well as the synthesis of methionine from 

homocysteine (9).  Methionine is converted to S-adenosylmethionine, which serves as a 

methyl donor for several methylation reactions within the cell, including DNA and 

histone methylation (229).  Folates are transported into the mitochondria via the 

mitochondrial folate carrier (158, 183, 241) and serve as cofactors for the mitochondrial 

serine hydroxymethyltransferase, for formation of formyl groups by the glycine cleavage 

system, and for the synthesis of the formylmethionine tRNA involved in the initiation of 

mitochondrial protein synthesis.  Regulation of cellular folate levels is a key component 

of maintaining the fidelity of DNA and RNA synthesis, amino acid metabolism, and 

epigenetic processes within tissues (229).  Several key folate-dependent steps in 

metabolism are illustrated in Fig. 1-2.   

  In mammals, circulating folates are monoglutamate forms, which are best viewed 

as the transport forms of this vitamin (24, 175).  Dietary folates are absorbed primarily in 

the duodenum and upper jejunum of the small intestine through a high affinity proton-

coupled folate transporter (PCFT) that functions optimally at low pH (190, 269).  In 

humans, a loss-of-function mutation in the gene encoding the PCFT results in hereditary 

folate malabsorption disease (190).   There are two folate transporters involved in moving 

folates across membranes at neutral pH: the reduced folate carrier (RFC) and the folate 

receptors (FR) (30, 79).  The RFC moves folates in a facilitative manner using an anion 

exchange mechanism and the FRs transport folates intracellularly via endocytosis (269). 
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RFC null mice can survive embryonic development only if pregnant females are injected 

with folic acid, but pups die post-natally at 12 days due to hematological pathology; 

transport using this protein is critical throughout the life of the animal (269).  On the 

other hand, mice where all FRs have been deleted die during development unless the 

pregnant females are given 5-formyl-THF; these mice survive gestation and develop into 

adulthood normally, highlighting the necessity of these receptors to maturing embryos 

(269).     

 Once inside the cell, folates serve as substrates for the enzyme folylpoly-γ-

glutamate synthetase (FPGS), which catalyzes the conversion of monoglutamate folates 

to poly-γ-glutamate derivatives using ATP and glutamic acid (16, 167, 199) (Fig. 1-2).   

Mitochondrial and cytosolic forms of FPGS are encoded by the fpgs gene in dividing 

cells in mouse and humans using alternative start sites, which are distinguishable by the 

presence of a mitochondrial leader sequence at the N-terminus of the mitochondrial 

protein.  The two isoforms allow the accumulation of folylpolyglutamates in the cytosol 

and mitochondria, the two cellular compartments involved in folate-dependent one-

carbon metabolism (72).  Folypolyglutamates are more efficient substrates for many 

folate-dependent enzymes and the cellular retention and accumulation of cofactors to 

high levels is necessary to meet the metabolic demands of rapidly dividing cells (167, 

239).   Mammalian cells that harbor inactivating FPGS mutations die from lack of end 

products of folate-dependent steps of metabolism in normal media (157, 239).   

 In the early 1940’s, Dr. Sydney Farber at the Jimmy Fund in Boston made an 

observation that the administration of folic acid to children with acute lymphocytic 

leukemia (ALL) increased the progression and severity of the disease (65).  Because of 
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this remarkable observation, he generated and tested the hypothesis that a folic acid 

antagonist might inhibit or arrest the proliferation of tumor cells and improve the 

mortality and morbidity of pediatric ALL, which at the time was an incurable disease.  In 

1948, he published the results of his study in the New England Journal of Medicine: 

administration of the folate antagonist 4-aminopteroyl-glutamic acid (aminopterin, AMT) 

to children with ALL frequently led to complete remissions of this disease, the first time 

such a remission was every observed (66).  Farber’s approach to target highly 

proliferative tumor cells by inhibiting steps critical to cellular division has been the basis 

for the development of chemotherapeutic agents and strategies for the past 60 years 

(162).  This fundamental study marked the beginning of the use of folate antagonists, i.e. 

antifolates, as chemotherapeutic agents. 

 The use of AMT was replaced shortly after the original studies with a slightly less 

toxic compound, methotrexate (MTX) (64).  Both MTX and AMT primarily inhibit 

dihydrofolate reductase (DHFR); the enzyme responsible for the reduction of folate and 

dihydrofolate to tetrahydrofolate.  Because reduced folates are the active folate cofactors 

required for one carbon transfer metabolism, treatment with AMT or MTX leads to the 

inhibition of purine and thymidylate biosynthesis, with severe consequences on DNA and 

RNA production.  MTX remains the first line therapy for ALL and is now even more 

frequently used in the treatment of several autoimmune diseases including psoriasis, 

rheumatoid arthritis, and sarcoidosis (189, 196, 197).   

 The basis for antifolate drug design efforts shifted toward the production of 

analogs that could be highly metabolized following the observation that MTX, like the 

naturally occurring folates, was metabolized to polyglutamate derivatives (17).  MTX 
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polyglutamates accumulate to high intracellular levels with sufficient exposure of 

leukemic cells, and are retained for substantial periods of time following removal of 

extracellular drug (17, 73, 199).  Long-term inhibition of DHFR is mediated by the poly-

γ-glutamyl derivatives of MTX (199, 212) and the targets of this form of the drug are 

expanded to two other folate-dependent enzymes: thymidylate synthase  (TS) (3) and 5-

aminoimidazole carboxamide ribotide transformylase (AICART) (5).   The intracellular 

formation of polyglutamate forms of MTX greatly enhance the cytotoxicity of this drug, 

and extend the length of time that intracellular metabolism is disrupted due to 

intracellular retention of the drug (41, 199).  The importance of FPGS activity on the 

efficacy of MTX suggested that the rationale for selection of antifolate agents should 

target compounds that are efficient substrates of this protein.   

 In the late 1970’s, the main target for the design of novel antifolate metabolites 

shifted from DHFR to the folate-dependent enzymes involved in thymidine and de novo 

purine synthesis.  The first drug to emerge from these efforts was N10-propargyl-5,8-

dideazafolate (CB3717), a potent TS inhibitor (125).  CB3717 was a moderately efficient 

substrate of FPGS; polyglutamated derivatives of CB3717 were 100-fold more potent as 

inhibitors of thymidylate synthase than the parent compound and were no longer efficient 

substrates for cellular efflux (117).  Phase I clinical trials determined that the compound 

was active against breast, ovarian, and liver cancer, but CB3717 had remarkable liver and 

kidney toxicity due to the insolubility of the drug in acidic pH (35, 117).  In spite of the 

fact that CB3717 proved to be too toxic for use in humans, the potent effect of this 

compound under clinical conditions was the first evidence suggesting that designing 

antifolates targeting thymidylate synthase or other folate-dependent biosynthetic enzymes 
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had great chemotherapeutic potential (35, 117).  This led to the synthesis of a number of 

additional molecules that were more water-soluble and a second generation analogue of 

CB3717, N-(5-[N-(3,4-dihydro-2-methyl-4-oxoquinazolin-6-methyl)-N-methylamino]-2-

thienoyl)-L-glutamic acid (DI694, ralitrexed, RTX), which was found to be more potent 

and had less toxic side-effects than the parent compound (118).  Like CB3717, RTX is a 

substrate for FPGS, in fact, a far superior substrate, and polyglutamate deriatives are 

more potent TS inhibitors than the than unmodified form of this compound (117, 118).  

RTX is currently used in the treatment of advanced colorectal carcinoma disease in 

Europe and Asia, but was never approved for use in the United States (50).  

 A second line of drug development efforts for tetrahydrofolate antimetabolites 

resulted in the identification of 5,10-dideaza-5,6,7,8-tetrahydrofolate (lometrexol, 

DDATHF), a potent inhibitor of GART, an enzyme in de novo purine synthesis(18, 165, 

237) (Figures 1-3 and 1-4).  Cell culture experiments determined that DDATHF was a 

potent inhibitor of cell growth and a very efficient substrate for FPGS, allowing 

conversion of drug to polyglutamate forms at low µmolar concentrations in cells (18, 

165).  Further studies showed that the polyglutamated forms of this molecule were more 

potent inhibitors of GART than the parent drug (205).  DDATHF was a promising 

antifolate; however, in phase I clinical trials DDATHF was found to induce severe 

unmanageable thrombocytopenia which prevented repetitive administration of the 

treatment (191).  After nearly a decade of attempts to circumvent this toxicity, 

combination of DDATHF and folic acid tremendously improved the toxicity profile of 

lometrexol(195), but the use of this compound in the clinic was never successfully 

pursued.    
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   The efficiency of both 6-R and 6-S diastereomers of DDATHF as a substrate for 

FPGS and the tight binding affinity of these compounds for GART initiated the synthesis 

of second-generation de novo purine synthesis inhibitors.  Eliminating the C5 methylene 

position in DDATHF produced a potent cytotoxic agent, LY231514 (pemetrexed, PTX), 

which was originally tested in human CCRF-CEM cells(238)(Figure 1-4).  Surprisingly, 

cell growth reversal studies determined that this agent was no longer an inhibitor of 

GART, but rather a potent inhibitor of TS (238)(Fig. 1-2).  PTX is a very efficient 

substrate for FPGS, perhaps the most efficient FPGS substrate ever made, creating 

anabolites that are retained intracellularly after drug exposure to submicromolar 

concentrations of parent drug (224, 238).  Very importantly, cell culture experiments 

determined that, unlike other traditional TS inhibitors, administration of exogenous 

thymidine, which prevents thymidylate synthase inhibition, does not completely reverse 

the cytotoxic effects observed from the drug; this suggested that PTX had at least one 

other target (224).  A study of the activity of PTX against several recombinant rodent and 

human enzymes in vitro led to the conclusion that both GART and DHFR were potential 

secondary targets for the polyglutamate forms of PTX (224). PTX is currently used as 

first line therapy for the treatment of non-small cell lung cancer and mesothelioma and is 

being tested in phase II clinical trials for the treatment of renal cell cancer in combination 

with gemcitabine (42).  In chapter 4 of this dissertation, we questioned the conclusion 

that GART and DHFR were the secondary targets of PTX, and found that in fact, the 

additional site of PTX-mediated inhibition was AICART, a site of action that had 

substantial impact for understanding the activity of this drug. 
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 The rationale for the design of antifolates as chemotherapeutic agents has been 

based largely on the understanding that tumor cells are highly sensitive to alterations in 

the pathways involved in nucleotide biosynthesis and amino acid metabolism.  This has 

proven very useful for the treatment of numerous types of cancers including ALL and 

colorectal carcinoma with MTX and Ralitrexed, respectively.  However, as is the case for 

many classes of chemotherapeutic agents, the clinical use for many of these 

antimetabolites is limited by toxicity in normal dividing tissues, such as those found in 

the gastrointestinal tract.  As such, a large effort has been made over the past two decades 

to design drugs against molecular targets that are unique to tumor cells.  The 

development and use of gleevec for the treatment of chronic myelogenous leukemia is the 

prototypical paradigm for rational drug design (55).  Gleevec specifically inhibits the 

kinase activity of the Bcr-Abl fusion protein made from the gene modified by the 

Philadelphia chromosome translocation, a protein that does not occur in humans without 

this translocation (55), making treatment based on Bcr-Abl similar to antimicrobial 

chemotherapy wherein drugs can be designed against proteins peculiar to prokaryotes.  

 Our laboratory has focused intensely on understanding the molecular basis for the 

effectiveness of antifolate agents in an effort to identify a potential mechanism that could 

be exploited to specifically target tumor cells with this class of antimetabolites.  As 

discussed above, central to the therapeutic utility of a large number of antifolates is their 

ability to serve as an efficient substrate for polyglutamation, catalyzed by the enzyme 

FPGS.   A few laboratories, including ours, have focused on understanding the control of 

this protein at the molecular level in normal tissues and tumor cells.  FPGS protein levels 

in mammals are regulated in both a division-specific and tissue-specific fashion and both 
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of these controls occur at the transcriptional level (12, 71, 244).  Abundant FPGS levels 

are detected in all normal and neoplastic dividing cells and are only found in a few select 

differentiated mammalian tissues (12, 166).   In mouse, there are two isoforms of FPGS 

produced from two promoters, which include different first exons in the mRNA: one 

protein is found exclusively in dividing cells and the second is found only in 

differentiated tissue (244).  The isoforms of FPGS identified have different substrate 

specificity attributed to the differences in the sequences of the N-terminal peptides (244).  

These studies suggested that the design of antifolates specific for polyglutamation by 

individual FPGS isoforms could be a potential mechanism of tissue-selective targeting of 

antifolate therapy for cancer.   To date, appreciable levels of expression of only one 

isoform of FPGS has been detected in human tissues, even though the second fpgs 

promoter used in mice has been identified in humans (245).  These observations initiated 

the studies presented in chapters 2 and 3 of this dissertation.  We sought an understanding 

of the regulatory mechanisms involved in the synthesis of one FPGS isoform over a 

second in mouse tissues.  We identified and explored the epigenetic and transcriptional 

interference mechanisms regulating the two promoters of the mouse fpgs gene, in an 

effort to understand how tandem promoters are coordinately controlled in mammals and, 

perhaps, to define the conditions where both promoters may be used in humans.  

 As discussed above, PTX inhibits TS primarily, but cell culture experiments 

suggest that this drug also has activity against additional folate-dependent enzymes (224).  

With the success of PTX in the clinical setting, understanding the additional targets of 

PTX became highly relevant to both current treatment regimens and to identifying 

additional cancer types that may be sensitive to PTX.   We have recently performed a 
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series of cell culture experiments that have developed evidence that the target for PTX 

secondary to TS is the second folate-dependent enzyme in de novo purine synthesis 

AICART.  These studies are discussed in chapter 4 of this dissertation. The significance 

of this is substantial, since the substrate for AICART is ZMP, a known activator of the 

AMP-activated protein kinase, AMPK (49), a key controlling element in the mTOR 

pathway (48). The mTOR pathway, responsible for balance of energy metabolism, 

protein and lipid synthesis, and growth, involves a series of upstream controlling proteins 

recognized as tumor suppressor proteins, including LKB1, PTEN, TSC1 and 2, and 

others recognized as cellular oncogenes, such as AKT and PI3 kinase (48).   Aberrant 

mTOR regulation is a common phenotype to a variety of cancers due to loss of tumor 

suppressors or over expression of oncogenes within the pathway.  Inhibition of this 

pathway by a clinically successful antifolate, PTX, suggests that its efficacy may involve 

mTOR inhibition and the development of additional antifolates specifically blocking 

AICART may be a promising molecular targeted approach towards neoplastic cells 

dependent on overactive mTOR. 
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Figure 1-2. Pathways involved in folate metabolism. GART (glycinamide 
ribonucleotide formyltransferase), AICART (aminoimidazole carboxamide 
ribonucleotide formyltransferase), DHFR (Dihydrofolate reductase), TS 
(thymidylate synthase) THF (tetrahydrofolate), 10 CHO-THF (10-formyl 
tetrahydrofolate), 5, 10 CH2 -THF (5, 10-methylene tetrahydrofolate).  Adapted 
from Dr. Julie Bronder’s dissertation (31).   
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Figure 1-3.  Steps in de novo purine synthesis.   The two folate-dependent 
enzymes in this pathway are glycinamide ribonucleotide formyltransferase 
(GART) and aminoimidazole carboxamide formyltransferase (AICARFT).  
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Figure 1-4.  Chemical structures of the antifolate compounds (6R)-
DDATHF and 231514.  
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Chapter 2: Multiple control mechanisms at the dual promoter mouse fpgs gene 
responsible for coordination of tissue-specific expression in vivo. 

 
 
 
INTRODUCTION 
 
I.  Folylpoly-γ-glutamate synthetase (FPGS) and the tissue-specific expression pattern 

of the mouse fpgs gene.   

 In mammals, circulating folates are monoglutamate forms, which are best viewed 

as the transport forms of this vitamin (24, 175). Folates serve as cofactors in metabolic 

pathways that require one-carbon transfer; i.e., de novo purine synthesis and thymidylate 

synthesis (9).  Dietary folates are transported into the cell by the folate receptor, the 

reduced folate carrier, and the proton-coupled folate transporter (30, 79, 190).  After 

passage into peripheral cells, folates are converted to poly-g-glutamate derivatives by the 

enzyme folylpoly-g-glutamate synthetase (FPGS) (16, 167, 199). The addition of multiple 

glutamate residues to these molecules traps them within the intracellular compartment. 

Without this metabolic trapping mechanism, mammalian cells die for lack of the end 

products of folate metabolism (157).  

 FPGS is also necessary for the action of most antifolates, and point mutations in 

FPGS are a common mechanism for tumor cell resistance to these drugs (10).  As is the 

case for endogenous folates, polyglutamated antifolate molecules are not substrates for 
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efflux and become concentrated within the intracellular compartment, maintaining the 

inhibitory effects of these molecules throughout the lifespan of the cell, a major therapeutic 

advantage for drugs that are efficient FPGS substrates.  Since the cytotoxic effects of 

antifolate therapies depend upon the presence of FPGS, determining the levels of this 

protein in tumors and normal tissue was important to identify candidate tumor-types and 

normal tissues that would be highly sensitive to these therapies.  

 Early studies carried out by Moran and Colman used an in vitro enzyme assay to 

determine the FPGS activity in normal and neoplastic tissues of the mouse (166).  The 

distribution of FPGS activity found in these mammalian tissues suggested that the 

expression of this protein was under strict regulation (12). High levels of enzyme activity 

were detected in all normal and neoplastic dividing cells, as well as certain tissues with a 

known dividing cell compartment, i.e. intestinal epithelium (12). In contrast, analysis of 

differentiated mouse tissues determined that only in mouse liver and kidney are 

measurable levels of FPGS expressed (12). Further analysis in developing rodent fetal 

tissues supported the idea that rapidly dividing cells require FPGS (12). In contrast, 

maturation of adult tissues and the induction of cellular growth arrest precipitated a rapid 

decline in FPGS expression  (12, 59). From these studies, it was concluded that FPGS 

expression is controlled by mechanisms linked to both cellular proliferation and tissue 

specificity (12, 59).   

 The concept that transcriptional regulation is involved in establishing the FPGS 

activity patterns was first suggested through Northern blot analysis performed by Sarah 

Freemantle, a previous post-doctoral fellow in this laboratory, examining the levels of fpgs 
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mRNA in several tissues of the mouse (71) (Fig 2-1).  The results of this experiment 

showed striking patterns of tissue-specific fpgs mRNA expression.  Abundant levels of 

fpgs transcript were detected in mouse leukemic cells, L1210, and in two differentiated 

tissues: mouse liver and kidney (Fig 2-1).  These expression profiles of fpgs mRNA 

determined for each tissue paralleled the FPGS pattern of activity found in previous studies 

(71).  The Northern blot studies supported the original idea that the control of FPGS 

expression is based on mechanisms that are both division-specific and tissue-specific and 

suggested that regulation was occurring at the level of transcription.  

 The mouse fpgs gene has two promoters spaced 9.5 kilobases apart within a 

genomic locus spanning 20 kilobases (Fig. 2-2) (200, 201, 244).   The downstream 

promoter (P2) is located in a CpG island and is activated when three Sp1 proteins bind to 

the consensus sites located immediately upstream of the transcriptional start site (43).  The 

upstream promoter (P1) is classified as CpG-sparse, and while attempts have been made to 

understand the cis elements and trans-acting factors controlling P1, they remain poorly 

defined (43). This is most likely the case because studies performed to identify regulatory 

regions using reporter promoter constructs are based on transient transfections of dividing 

cells, but the P1 promoter is expressed only in differentiated tissue and the required factors 

may not be present in the transfected cell line.  Transcripts generated at P1 include two 

upstream exons (A1a and A1b) linked to exons 2-15 (Figure 2-2) (202, 244).  In contrast, 

when P2 is used, mature transcripts contain exons 1-15 (Figure 2-2).  The alternate fpgs 

mRNAs produce two isozymes with regulatory consequences: the protein generated from 
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P2 transcript is subject to feedback inhibition by folate polyglutamates, and the enzyme 

encoded by P1 mRNA is less sensitive to this control (7).   

 Fiona Turner, a former student in this laboratory, used ribonuclease protection 

assays (RPAs) to define the conditions for the use of the two mouse fpgs promoters (244).  

These studies uncovered an additional layer of complexity at the mouse fpgs gene that 

greatly helped to explain earlier data.  Dr. Turner’s studies established the premise for the 

experiments discussed in this chapter:  she established that the use of the P2 promoter is 

reserved for all neoplastic and normal dividing cells (244).  This conclusion was stated on 

the basis of definitive RPAs demonstrating that fpgs mRNA from dividing cells, i.e. 

L1210, when hybridized to a probe from the P1-specific exon generated a protected 

fragment size supporting that the fpgs mRNA contained exons 1/4, but not exons A1a or 

A1b (Figure 2-3, left panel).  However, when L1210 mRNA was hybridized to the P2 

probe, the protected fragment size indicated the presence of exons 1-4 in the fpgs transcript 

(Figure 2-B, right panel).  In contrast, P1 was found to be the promoter almost exclusively 

used in mouse liver and kidney, as evident by the fragment size detected when the P1 

probe was hybridized to the fpgs mRNA (Figure 2-3, left panel) (243, 244). Hence, from 

these studies it appeared that transcriptional initiation at the mouse fpgs gene is tightly 

regulated to ensure that tissues expressing this gene are restricted to the use of only one 

promoter.   

 We were very interested in these observations and saw the mouse fpgs gene as an 

excellent model of a complex genetic locus employing the use of multiple mechanisms to 

achieve tissue-specific patterns of expression from two promoters.  We designed a series of 
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studies aimed at understanding the transcriptional mechanisms dictating promoter choice at 

the mouse fpgs gene permitting the synthesis of one FPGS isoform over the other in a 

tissue-specific fashion.  Our studies focused on mechanisms of epigenetic regulation and 

transcriptional interference at the mouse fpgs locus.   

 

II.  Basic mechanisms of transcription 

A.  Overview 

 The process of transcription can be divided into three general stages: initiation, 

elongation, and termination.  Throughout the transcription cycle the transcriptional 

machinery is faced with substantial obstacles that must be managed in order to maintain 

high fidelity transcription.  These challenges include but are not limited to: 1. steric 

hinderance by nucleosome placement along the DNA, 2. pre-mRNA processing involving 

splicing factors and machinery to ensure correct mature mRNA synthesis, and 3. 5’ 

capping and 3’ end polyadenylation.  As a result, every phase of the transcription cycle 

requires a highly coordinated interplay between RNAPII, transcription factors, histone 

modifying enzymes, chromatin remodelers, and mRNA processing factors.  We discuss the 

stages of transcription and some mechanisms involved in regulating transcription below as 

separate sections for the sake of clarity, keeping in mind that it is the interplay of all these 

events that coordinate the complex patterns of eukaryotic gene expression (Figure 2-4).    

 

B.  General features of transcriptional initiation: 
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 The formation of a pre-initiation complex (PIC) occurs when the general 

transcription factors IID, IIB, IIE, IIF, IIH, TBP and RNAPII assemble at the promoter 

region of a gene (90).  Activators bind cis elements located upstream of the core promoter 

and recruit coactivator complexes, such as SAGA and/or mediator, that mediate regional 

acetylation of histones and chromatin remodeling to allow PIC formation (90, 132).  An 

open complex is formed when the helicase activity of TFIIH melts the DNA surrounding 

the transcriptional start site and the template is positioned in the active site of RNAPII (90, 

132). Transcription initiation begins when the first phosphodiester bond of RNA is formed. 

Upon successful initiation, the complex undergoes a process referred to as promoter 

clearance, often involving a series of abortive initiation events (Fig 2-4).  In cases where a 

gene is actively transcribed, RNAPII escapes from the factors bound to the promoter and 

proceeds down the template strand in the 3’ to 5’ direction.   

 

C.  General features of transcriptional elongation 

 During elongation, a set of regulatory proteins traverse the coding region through 

direct interactions with RNAPII, unlike the DNA binding proteins associated with 

initiation. The C-terminal domain (CTD) of the Rbp1 subunit of RNAPII provides the 

scaffold for secondary proteins to bind to the elongation complex (2, 90, 104, 133).  This 

region is composed of 25-52 repeats of the heptad sequence YSPTSPS. The differential 

phosphorylation of the serines at positions 5 and 2 determine the proteins recruited to the 

enzyme along the length of the gene (90, 133) (Fig 2-4). At the 5’ end of a gene, CDK7, a 

kinase in the TFIIH complex, phosphorylates serines at the 5 position of the heptad repeat 
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potentially generating a highly modified CTD (Figure 2-4).  This modification recruits and 

activates the 5’ mRNA capping machinery through binding guanyltransferase, a member 

of the capping complex (104).  Additionally, phosphorylation of serine 5 of the CTD 

recruits the Polymerase Associated Factor (PAF), which facilitates the binding of histone 

H3 lysine 4 methyltransferase (HMTs), and FACT, a histone chaperone needed to mobilize 

nucleosomes off the DNA 3’ to the elongation machinery and replace the nucleosomes 

behind the transit of the elongation complex (92, 141, 262).  Towards the 3’ end of a gene, 

phosphorylation of Serine 2 accumulates as a consequence of CDK9 kinase activity, a 

protein member of the P-TEFb elongation complex (2) (Figure 2-4). This modification 

recruits polyadenylation factors and histone H3 lysine 36 methyltransferase, proteins 

specific for the terminal phase of the transcription cycle (2, 130) (Figure 2-4).  The 

distinguishing features of the proteins bound to RNAPII and the CTD PTMs during the 

transcription cycle provide methods for distinction between the different phases of 

transcription.  We employed the use of these tools in our studies examining transcriptional 

processes occurring at the mouse fpgs gene. 

 

D.  Promoter-proximal pausing 

 Promoter-proximal pausing, also known as stalling or poising, was first described 

at c-myc, human-immunodeficiency virus (HIV), and heat shock response genes in 

Drosophilia (184).  In the original studies at the c-myc gene, full-length mRNA levels of 

c-myc declined upon cellular differentiation, but nuclear run-on assays detected persistent 

RNA synthesis between exon 1 and intron 1 (19).   The results from these experiments 
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suggested that the 5’ end of the gene was engaged in the production of mRNA transcript, 

even when full-length c-myc mRNA was not being produced.  As such, it appeared that a 

block at elongation, rather than initiation was controlling expression of c-myc mRNA (19).  

The components controlling promoter-proximal pausing have been identified largely 

through studies using transcription inhibitor 5,6-dichloro-1-b-

Dribofuranosylbenzimidazole (DRB) (154).  Increasing doses of DRB have been shown to 

greatly reduce the synthesis of 100 nt transcript in vitro, but short-length transcripts of 25-

30 nt were able to accumulate even at high concentrations of drug, suggesting that drug-

mediated inhibition of transcription occurred at a point in elongation (253).  Two negative 

elongation factors, DRB sensitivity-inducing factor (DSIF) (252) and Negative Elongation 

Factor (Nelf) (264) were identified in studies examining the components responsible for 

DRB sensitivity (Figure 2-4).   These proteins associate with RNAPII and have been 

shown to control promoter proximal pausing in both Drosophila and human cells (259).  

PTEFb is DRB-sensitive and responsible for the release of RNAPII complexes from a 

stalled mode to a productive elongation state (153, 154) through the phosphorylation of 

serine 2 of the CTD of RNAPII and DSIF and NELF (184) (Figure 2-4) (266). Current 

thought proposes that the phosphorylation of DSIF and NELF results in the release of 

NELF from the stalled complex, and the entrance of TFIIF, a factor that enhances 

productive elongation (46).  While many of the major players involved in promoter-

proximal pausing have been identified, the sequence of events leading to the establishment 

of a poised state and the release from pausing into a productive elongation mode are 

largely unknown.    
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E.  Tissue-specific expression 

 Over two hundred different cell types comprise mammalian organisms and are 

created from varying transcription of an identical genomic sequence.  A population of 

mRNA transcripts is common to all cells, and are generated from genes commonly referred 

to as housekeeping genes, however expression of unique subsets of genes are reserved for 

specific cell-types and the resulting expression patterns establish cellular identify. A major 

determinant of tissue-specific expression is the production of lineage-specific transcription 

factors in developing and differentiated tissues.  Tissue-specific transcription factors bind 

cis-acting DNA elements and through direct interactions with basal transcriptional 

machinery and coactivators or corepressors impact gene expression. For example, there are 

six families of liver-specific factors characterized to date: HNF1, HNF3, HNF4, HNF6, 

C/EBP and D-binding protein (215), and their presence support the expression of liver-

specific genes in developing and differentiated hepatocytes (266).  The expression of liver-

specific genes is hugely important in maintaining a differentiated state, and loss of HNF1 

and HNF4 is a common feature of mammalian hepatoma cell lines. Re-expression of these 

proteins has been correlated with the reestablishment of liver-specific cellular processes 

found in mature hepatocytes (228).  

 The accessibility of consensus sequences in tissue-specific promoters to the DNA 

binding proteins is considered to play a major role in regulating patterns of tissue-specific 

gene expression (215).  As such, patterns of chromatin histone post-translational 

modifications (PTMs) and DNA methylation should be considered regulators of tissue-

specific expression.  For instance, precedent literature argues that certain histone PTMs are 
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a prerequisite for the sequence-specific binding of the transcription factor Myc (86).  The 

role of epigenetics in tissue-specific expression remains incompletely studied.  Hence, we 

have considered the mouse fpgs gene as a model of tissue-specific expression and set out to 

examine the patterns of DNA methylation and histone PTMs across this locus in different 

tissues to address the potential roles of these epigenetic mechanisms in establishing the 

tissue-specific expression patterns observed.   

 
  
III.  Epigenetics mechanisms and transcription 
 

A.  General comments 

 Epigenetics is the “study of heritable changes in gene function that occur without 

changing the underlying DNA sequence”.  The field of epigenetics is extremely broad and 

covers topics of chromatin biology, DNA methylation, and non-coding RNAs.  The 

importance of these processes in gene regulation is tremendous and genome-wide studies 

using advanced ChIP-Chip and ChIP-Seq technologies have drastically enhanced our 

awareness of the complexities involved in epigenetic regulation.  However, we are far from 

understanding the entire story.  In fact, a current challenge of the field is understanding the 

interplay between the different epigenetic mechanisms and defining the sequence of events 

leading to observable changes in gene regulation.  In our studies, we have used the mouse 

fpgs gene as a model to consider the potential cooperation between chromatin structure and 

modifications and DNA methylation in the determination of tissue-specific patterns of 

expression in the adult animal.  
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B.  Histone biology 

 A major step forward in understanding the chromatin structure was taken in 1974 

by Robert Kornberg, when he proposed that the structure was based on a repeating unit of 

two molecules of the histones H2A, H2B, H3, and H4, and approximately 200 base pairs 

of DNA (Figure 2-5) (134). Interestingly, the concept that histones were not simply 

structural obstacles interfering with RNA synthesis was described ten years prior to 

Kornberg’s chromatin structure theory, when a series of experiments revealed that nuclear 

histones were both acetylated and methylated (6).  In this study, Allfrey proposed that such 

modifications, particularly acetylation, “may affect the capacity of histones to inhibit 

ribonucleic acid synthesis in vivo” (6).   

 The fields defining the roles of chromatin structure, modifications, and function in 

DNA replication and RNA transcription have greatly expanded the observations made in 

these initial studies. The positioning of nucleosomes within the genome appears to be 

highly regulated, supported by the fact that nucleosome free-regions exist at a large 

proportion of promoter regions across the genome (141). Assembly of Kornberg’s histone-

DNA units, now called the nucleosome, positions the amino-terminal tail of each histone 

such that it protrudes from the core structure and is available to serve as a substrate for 

modifying enzymes (135).  Histone post-translational modifications (PTMs) include 

acetylation, methylation, phosphorylation, ubiquitination, and sumoylation (135) (Figure 

2-5).  The enzymes responsible for modifying histones are recruited to specific positions in 

chromatin often through protein-protein interactions with molecules involved in 

transcriptional elongation, DNA methylation, and variety of other cellular processes.  



www.manaraa.com

 

 25 

These interactions result in the deposition of histone PTMs across chromatin in a highly 

ordered fashion to create a pattern of histone PTMs, originally referred to as the histone 

code (119), which are now thought to be critically involved in the regulation of 

transcription.      

 The truly sweeping functions of histone PTMs are currently an area of intense 

investigation.  Current thought proposes that the roles of histone PTMs in transcription can 

be classified into at least one of three general mechanisms: 1. Histone PTMs, such as 

histone acetylation, affect chromatin stability and structure leading to changes in DNA 

availability to factors in the cellular milieu, 2.  Histone PTMs can alter the genomic 

processes occurring at a specific DNA location by either preventing or recruiting the 

binding of factors to modified areas of chromatin, and 3.  Histone PTMs are dynamic and 

reversible and reflect the changing activities over a stretch of DNA sequence. Several 

histone PTMs known to be involved in transcription have been profiled across the locus of 

a highly active gene with a single promoter (247).  In the studies discussed in this chapter, 

we extended these observations through the examination of several histone PTM profiles 

over the two promoters of the mouse fpgs gene in several tissues.  

 
i.  Chromatin modifications involved in transcriptional regulation 
  

 We elected to profile histone PTMs across the mouse fpgs gene that are known to 

play a role in the transcriptional activation or repression of genes in yeast and other 

systems (141).  We studied histone H3 and H4 acetylation, as well as, histone methylation 
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at lysines 4, 9, 27, and 36.   Composite profiles of these modifications generated from 

genome-wide studies in yeast are shown in Figure 2-6.  

 

ii.  General terms and concepts 

Bromodomain:  Proteins that contain this domain bind to acetyl-lysine residues in 

histones N-terminal peptide tails.  Structural analysis of the p300/CBP coactivator 

identified three amino acid residues, Tyr 760, Tyr 802, and Asn 803, involved in 

recognition of the acetyl-lysine and these residues are conserved across family members 

(168).  The aromatic residues form a hydrophobic binding pocket in which neutral 

acetylated lysines are bound preferentially to unmodified lysine residues (27). Additional 

proteins containing bromodomains have a range of functions and include HATs (i.e. 

GCN5), transcription factors (i.e. TAFII250), and chromatin remodelers (i.e. Brg1 in 

Swi/Snf complex) (168).   

Chromodomain: This domain consists of 50 amino acids and is composed of α-helices 

and a three stranded anti-parallel β-strand sheets.  Chromodomains are found in a variety 

of proteins and facilitate protein-protein and protein-DNA interactions (27).  One 

important recognition site for chromodomains is methylated lysines within histones, which 

allows the docking of proteins involved in chromatin regulation directly to the nucleosome.  

Heterochromatin Protein 1 (HP1) was the first protein identified to bind histones through 

its chromodomain at methylated lysine 9 of histone H3 (172).  Structural analysis of HP1 

with a methylated histone H3 peptide revealed that three aromatic side chains Tyr 21, Trp 

42, and Phe 45 form a hydrophobic binding pocket for the N-methyl groups on lysine 9 
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(172).   Chromodomain containing proteins include chromatin remodeling complexes (e.g. 

CHD1 and Mi2) and Polycomb proteins (135).   

SET domain containing methylases:  This class of enzymes are responsible for the 

methylation of lysines at residues 4, 9, 27 and 36 of histone H3 (225).  Structural studies 

have shown that the N-terminal and C-terminal regions of the domain orient to form a 

hydrophobic pore, referred to as the lysine-access channel, which positions lysines in close 

proximity to the methyl donor S-adenylhomocysteine (27).   

Polycomb complexes:  Polycomb group proteins (Pcg) mediate the stable repression of 

key developmental genes in embryonic stem cells to maintain a state of pluripotency (29). 

The PcG proteins form two complexes, Polycomb repressive complex (PRC) 1 and 2.  

PRC2 is composed of EE2, EZH2, and SUZ12 in mammals and is directed to target genes 

through recognition of the DNA cis element the Polycomb Response Element (Pre) (225).  

EZH2 catalyzes the addition of methyl groups to lysine 27 of histone H3(225).  PRC1 

directly binds to H3K27me3 and stabilizes compaction of chromatin and transcriptional 

repression. Genome-wide studies using mouse and human embryonic stem cells have 

located PRC2 and PRC1 components at genes predominately involved in development and 

differentiation (29, 139).  

 

iii.  Histone acetylation and deacetylation 

 Histone acetylation is the most comprehensively studied histone PTM to date and is 

a proven component of several aspects of histone biology, including nucleosome assembly, 

chromatin folding, and transcriptional control (218). The addition of an acetyl group to the 
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ε-amino of specific lysines within the histone tail neutralizes the positive charge of this 

region, which, in the context of the nucleosome, disrupts the charge-charge interaction 

between the positively charged histone tail and the negatively charged DNA (218).  As a 

result, nucleosome stability is compromised and the availability of DNA sequence to the 

binding of cellular trans factors necessary for transcription is greatly enhanced (249).  

Additionally, acetylated histones are docking sites for proteins with bromodomains (135).  

 All four of the core histones serve as substrates for the family of histone 

acetyltransferases (HATs), which carry out the enzymatic acetylation of histone tails (218).  

Interestingly, several transcription regulatory proteins, i.e. TAFII250, possess 

acetyltransferase activity (230). In contrast, histone deacetylases (HDACs) are a class of 

proteins that remove acetyl groups from lysines.  HDACs mediate the silencing of genes 

and are often associated in multi-subunit repressor complexes (218). HDACs detected at 

the coding regions of active genes have been shown to facilitate transcriptional elongation 

through preventing initiation at cryptic promoters located within the body of genes.  

 Recent studies have described that histone acetylation at active genes is restricted to 

the 5’end of the locus (Figure 2-6) (247).  Genome-wide studies in yeast and higher 

eukaryotes have mapped the acetylation of lysines 9 and 14 of histone H3 and lysine 16 of 

histone H4 to the 5’ end of active genes (186, 198, 216).  Interestingly, abundant 

acetylation at these lysines has also been detected across promoter regions poised for 

transcriptional activation, such as the p21 promoter (81).  Commonly detected profiles of 

histone H3 and H4 acetylation across an active genetic locus are illustrated in Fig 2-6.   
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iv.  Histone lysine methylation 
  

 Genome-wide studies have shown that different histone methylation profiles can be 

used to distinguish genomic regions as transcriptionally active or silent.  Both lysines and 

arginines within the histone tails are acceptor sites for methylation (225). The ε-amino 

group of histone lysine residues can accept up to three methyl groups and therefore can 

exist in either a mono-, di-, or tri-methylated form, adding an additional layer of 

complexity to this class of histone PTMs compared to histone acetylation (225).  The 

family of enzymes responsible for methylating histone lysines is referred to as histone 

methyltransferases (HMTs), and the residues discussed below are substrates for the SET 

domain-containing class of HMTs (225). Originally, chromatin marks of histone 

methylation were thought to be permanent, but the first histone demethylase, LSD1, was 

identified a few years ago and several other classes of demethylases have since been 

identified (222).  Because lysine residues 4, 9, 27, and 36 within histone H3 have a 

recognized involvement in the regulation of transcription in other systems, we questioned 

their role in the regulation of the tissue-specific expression patterns of the two mouse fpgs 

promoters. 

 

a.  Histone H3 lysine 4 methylation 

 Histone H3 lysine 4 methylation (H3K4me) is considered a mark of euchromatin, 

as such it is detected across genomic regions that either are currently generating transcript 

or are poised for activation (87, 207).  The patterns of H3K4me1, 2, and 3 described in 
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yeast are shown in Fig 2-6.  In yeast, H3K4me1 peaks at the 3’end, H3K4me2 is detected 

over the coding region, whereas H3K4me3 is restricted to the 5’ ends of active genes (186) 

(Fig 2-6).  Genome-wide maps of histone methylation patterns in mouse and human cells 

showed that all three methylation states correlate with transcriptional levels, but at highly 

active genes H3K4me3 was greatly increased and mono- and di- forms of this modification 

were substantially less abundant (15, 20). The link between H3K4me3 and the 5’ end of 

genes has been greatly expanded upon over the past year (see discussion). 

 As discussed above, the phosphorylation of RNAPII within the CTD recruits the 

Paf1 complex, which binds directly to at the 5’-end of genes to the histone H3 lysine 4 

methyltransferases, such as Set 1.  This results in the deposition of methyl groups on lysine 

4 of regionally positioned histone H3 (136). Interestingly, the recruitment of PAF is also 

thought to facilitate ubiquitination of histone H2B lysine 120 (261), a modification that has 

been shown to be important in the addition of the second and third methyl groups at lysine 

4 of histone H3 (54).   

 The functions of H3K4me3 are still being uncovered but its importance in 

facilitating transcription is highlighted by the fact that the chromatin-remodeling complex, 

NURF, has been shown to bind to this PTM through a PHD finger domain (143).  

Interestingly, evidence suggests that the presence of methylation of histone H3 at lysine 4 

may be integral in preventing transcriptional repression of marked promoters from de novo 

DNA methylation.   Recently, LSD1, a demethylase specific for lysine 4 and 9 of histone 

H3, has been shown to be required for the maintenance of global DNA methylation in 
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mouse development (255).   

b.  Histone H3 lysine 36 methylation 

 In yeast and mammals, histone H3 lysine 36 methylation is also abundant across 

actively transcribed genes.  While all three methylation states exist to some degree at 

active genes, most of the current work has focused on the tri-methylated state at lysine 36 

of histone H3 and its role in transcriptional regulation.   Genome-wide studies in yeast 

have determined that this histone PTM is most abundant towards the 3’ end of active 

genes, in striking contrast to the pattern determined for H3K4me3 (Fig 2-6).  Studies at 

highly active mammalian genes have also found H3K36me3 enrichment at the 3’ end of 

these loci (11, 247). The contrast between the distribution of H3K4me3 and H3K36me3 

across active genes is extremely interesting.  Like the family of histone H3 lysine 4 

methyltransferase, the localization of HMTs specific for lysine 36 (i.e. Set 2) are 

dependent upon the phosphorylation status of the CTD of RNAPII, but unlike H3K4me3, 

H3K36me3 is coincident with the phosphorylation of serine 2 residues within the CTD of 

RNAPII (130).  

 The function of H3K36me3 appears to mediate transcriptional repression in the 

coding region of active genes.  The mechanism of H3K36me3-mediated transcriptional 

repression was uncovered in two studies that determined that H3K36me3 was bound by a 

Rpd3, a histone deacetylase complex, via the chromodomain of Eaf3, a subunit of the 

Rpd3 complex (38, 128). Thus, H3K36me3 appears to establish compact chromatin in the 

wake of elongating RNAPII, preventing initiation at cryptic promoters that have been 
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released from bound nucleosomes by the passage traveling RNAPII through the genomic 

region.   

 
c.  Histone H3 K27 methylation 

 The different methylation states of histone H3 lysine 27 are associated with both 

euchromatic and heterochromatic states of chromatin.  H3K27me1 has been detected in 

human cells most abundantly at active promoters, whereas H3K27me2 and me3 levels 

were higher at silent promoters (15).  H3K27me3 serves a docking site for the 

chromodomain of PRC1 (225), which results in polycomb-mediated heterochromatin 

formation (see above).  The role of H3K27me1 at active promoters remains poorly 

understood.  

  
d.  Histone H3 K9 methylation 

 Histone H3 lysine 9 methylation is a histone PTM that has been detected at both 

euchromatic and heterochromatic regions of chromatin in higher eukaryotes. Lysine 9 

methylation of histone H3 creates a binding site for the heterochromatin protein 1 (HP1) 

family of molecules.  In euchromatin, both H3K9me2 and me3 are often found at 

promoters that are transcriptional silent and the coding regions of active genes (Fig 2-6).  

In contrast, H3K9me3 is the mark that is predominately found throughout the entire region 

of heterochromatin.  Su(var)3 was the first HMT identified and it is responsible for the 

methylation of lysine 9 of histone H3 in Drosophilia (192).  Several homologues of 

Su(var)3 have been shown to methylate lysine 9 in mammals including Suv39h, G9a and 

Eu-HMTase I.  Interestingly, studies in knockout ES cells determined that G9a and Eu-
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HMTaseI are critical for establishing the patterns of H3K9me2 in euchromatin, whereas 

disruption of Suv39h results in the loss of H3K9me3 in heterochromatin (53).   

 A very interesting aspect of H3K9 methylation is the potential connection between 

this histone PTM and DNA methylation in mammals.  Previous work has shown that 

H3K9 methylation directs DNA methylation in Neurospora crassa and Arabidopsis 

thaliana, but the causal relationship between these two epigenetic marks in mammals 

remains largely unknown (74).  Evidence exists to supports each of these epigenetic 

modifications, i.e. DNA methylation and H3K9 methylation, as the primary mediator of 

transcriptional silencing (140, 210).  For example, the methyl-binding protein -1 (MBD1) 

is known to interact with the lysine 9 specific HMT, SETDB1, suggesting that DNA 

methylation may be a prerequisite for H3K9 methylation (210).  In contrast, studies in 

Suv39h -/- embryonic stem cells showed a substantial reduction in H3K9me3 and DNA 

methylation across silenced genomic regions, supporting the counter argument that H3K9 

methylation mediates DNA methylation (140).   

  
C.  DNA methylation as an epigenetic mark and regulator of transcription:  

 DNA methylation occurs at CpG dinucleotides and is an epigenetic modification 

required by mammals to ensure proper embryonic development and survival (142). The 

DNA methyl transferases (Dnmts) are the enzymes responsible for establishing and 

maintaining genomic methylation patterns (131). The de novo Dnmts, Dnmt3a and 

Dnmt3b, modify unmethylated DNA, whereas Dnmt1 acts on a hemi-methylated substrate 

during replication. DNA methylation is thought to mediate transcriptional repression by 
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masking DNA binding regions from sequence specific transcription factors or by the 

recruitment of methyl binding proteins (MBPs) (Figure 2-7) (131).  MBPs have been 

shown to complex with HDACS, chromatin remodeling complexes, and histone H3 lysine 

9 methyltransferase to establish a repressive chromatin state (Figure 2-7) (123, 131, 210).  

Although the interplay of histone PTMs and DNA methylation has been shown to exist, the 

sequence of events leading to a transcriptionally inactive state remain open and 

unanswered.    

 Two types of promoters exist in the mammalian genome when classified by CpG 

dinucleotide content: regions with densely packed CpGs, called CpG islands, compose 

60% of mammalian promoters and are usually found unmethylated  (23). The second 

category includes promoters with a sparse number of CpGs that are often methylated (23).  

This profile of methylation is established during embryogenesis and is stable in normal 

somatic cells (193); however, certain tissue-specific genes undergo demethylation in their 

tissue of expression (32, 75, 227).  Whether demethylation at these genes is a primary 

event or a consequence of transcriptional activation by other mechanisms is unknown.  

  While a requirement for DNA methylation has been well established in genomic 

imprinting, X-chromosome inactivation, and in the progression of certain cancers, its 

participation in the regulation of TSE in normal tissues remains unclear (121). Recently, 

genome-wide studies have provided evidence supporting a role for DNA methylation in 

TSE (58, 227).  In those studies, a proportion of mammalian promoters were methylated in 

a tissue-specific manner, and this methylation was correlated with transcriptional silencing 
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(58, 227). In the experiments discussed in this chapter, we explored the role of DNA 

methylation in the regulation of the tissue-specific expression of the P1 promoter. 

 

IV.   Concepts of Transcriptional Interference 

 Transcriptional interference (TI) in broad terms describes a situation where 

transcriptional processes at one genomic region influence the potential for transcriptional 

activity at a second genomic region, which is usually located immediately upstream or 

downstream.  TI mechanisms thought to be involved in gene regulation include: 1) 

competition for cis elements or trans factors required for transcriptional activation, which 

has been proposed to regulate the β-globin locus during mouse development (70); 2) 

histone PTMs positioned across a genomic region as a consequence of transcriptional 

activity at one locus preventing initiation at a second gene, i.e. H3K36me3 deposition in 

the body of a gene prevents initiation at intragenic promoters (128); and 3) promoter 

occlusion, where transcription complexes generated at one gene blocks initiation at a distal 

gene by preventing transcription initiation factors and machinery from properly interacting 

with the promoter region (28, 62, 83, 107, 155).   

 With the increasing number of genes found to have multiple promoters, it has 

become increasingly important to understand if and how TI may influence the conditions 

under which certain promoters within a genetic locus are used.  The two promoters of the 

mouse fpgs gene are arranged in tandem and are regulated such that use of each promoter 

is controlled in a tissue-specific fashion.  We questioned if and how processes of TI 

dictated promoter choice at the locus in different tissues of the mouse.   
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V.  Objectives of this study 

 Previous studies in our laboratory and others determined that the mouse fpgs gene 

is expressed in a tissue-specific fashion and possess two promoters that are used under 

discrete conditions:  the upstream P1 promoter is active exclusively in mouse liver and 

kidney, while the downstream P2 promoter is utilized by all dividing tissues and cells 

(244).  In this study, we investigated how the two mouse fpgs promoters are controlled to 

accomplish this tissue-specific pattern of expression.  We identified several mechanisms 

regulating expression from this locus including epigenetics, transcriptional interference, 

and factors pausing early stages of elongation.   There were three critical pieces of data that 

lead us to explore the relevance of epigenetics and transcriptional interference in the 

control of the mouse fpgs gene: 1.  P1 was determined to be within a tissue-specific 

differentially methylated region (TDMR), where methylation of P1 inversely correlates 

with promoter activity (Fig 2-9).  2.  DNAse hypersensitivity analysis determined that the 

chromatin structure surrounding P2 is open and sensitive to DNAse I digestion in all 

tissues, but P1 is only digested in liver and kidney, when this promoter is active.  It 

appeared that DNA methylation and chromatin state may determine the tissue-specific 

expression from P1.  3.  Real-time analysis of fpgs mRNA levels generated from P2 in 

mouse liver determined that expression from P2 in this tissue is measurable, in contrast to 

the situation in mouse brain where fpgs mRNA levels are undetectable, but transcription is 

severely restricted when compared to the levels detected in L1210 cells (Table 2-2).  These 

data suggested that the P2 promoter in mouse liver was capable of firing, but was being 

repressed, perhaps because of happenings at P1 in this tissue.  Based on these studies, we 
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aimed to gain insight into the profiles of histone PTMs and transcriptional complexes 

across the entire fpgs locus in L1210 cells, mouse brain, and liver. 

 

MATERIALS AND METHODS 
 
Materials 

C57BL/6 mice were used in all the mouse studies and were originally obtained from 

Charles River.   Chemicals and reagents were purchased from Sigma (St. Louis, MO) and 

Fischer (Pittsburgh, PA).  Antibodies were obtained from Upstate Biotechnology 

(Billerica, MA), Santa Cruz (Santa Cruz, CA), and Abcam (Cambridge, MA) and will be 

discussed individually in the sections to follow.  Protein G Sepharose (cat #17-0618-01) 

beads were purchased from Amersham Biosciences (Uppsla, Sweden).   25 nmoles of 

DNA oligo primers were purchased for these studies from Intergrated DNA Technologies 

(IDT).  Quanti-tect Sybr Green PCR Master Mix (product # 204143) was purchased from 

Qiagen (Valencia, CA) and used for all of the Real-time PCR analysis.   A bath sonicator 

(Diagenode) was used to shear genomic DNA into 100-300 bp size fragments.  The Real-

time PCR machines used in these studies were BioRad DNA Engine Peltier Thermal 

Cyclers with a Chromo 4 Real-Time Detector attachment. Opticon Monitor Software was 

used to analyze the Real-Time data.    
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Cell culture 

 L1210 mouse leukemic suspension cells were maintained at a density between 105-

106 cells/ml in RPMI-1640 medium (Gibco/Invitrogen) supplemented with 10% Fetal 

Bovine Serum (FBS) and stock cultures were fed every 2 days.  Cells were grown at 370C 

in 5% CO2.   

 

Chromatin Immunopreciptation (ChIP)-histone modifications. 

 Harvesting and cross-linking mouse brain and liver 

  C57BL/6 were anesthetized using isoflurane and sacrificed by cervical dislocation.  

Blood was removed from the liver in situ by flushing cold phosphate buffered saline (PBS) 

into the hepatic vein using a 21-gauge needle and syringe.  The organs were harvested and 

diced using a sterile razor blade and the tissue was weighed.  Diced mouse liver or brain 

(300-500 mg) was placed in 30-40 mls of RPMI-1640 supplemented with 10% FBS and 

1% formaldehyde (HCHO).  The samples were rocked at 250C for 10 minutes (brain) or 15 

minutes (liver).   Fixation was stopped by the addition of glycine to the media to achieve a 

final concentration of 0.125M.  The samples were rocked at 250C for an additional 5 min.  

Tissue samples were pelleted by centrifugation at 450 x g at 4oC for 10 minutes.  Pellets 

were resuspended in 5 mls of PBS with 1mM phenylmethanesulphonylfluoride (PMSF), 

swirled, and poured into a Dounce homogenizer.  Samples were dounced 20-24x to 

achieve single cell suspension.  PBS with 1mM PMSF (12 mls) was used to rinse out the 

dounce homogenizer and samples were passed through sterile gauze to remove tissue 

clumps.  The suspensions were spun down at 1500 RPM at 4oC for 10 minutes.  
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 Cross-linking L1210 cells   

 L1210 cells were suspended at a density of 5 x 105/ml with 1% HCHO in RPMI-

1640 medium in a T175 flask.  The cell suspension was gently stirred with a small stir bar 

at 250C for 8 minutes, to ensure that the cells did not settle to the bottom of the flask 

during cross-linking.   Glycine was then added to the media to achieve a final 

concentration of 0.125 M and the cells were mixed for an additional 5 minutes. Ten million 

cells were pelleted by centrifugation at 1500 RPM at 4oC for 10 minutes, resuspended in 5 

mls of PBS + 1mM PMSF, and again pelleted.   

 Cross-linked cells and mouse tissues were washed in buffer I (0.25% Triton X-100, 

10mM EDTA pH 8.0, 0.5mM EGTA pH 7.5, 10mM Hepes, pH = 7.5), and then in buffer 

II (0.2M NaCl, 1mM EDTA pH 8.0, 0.5mM EGTA pH 7.5, 10mM Hepes, pH 7.5) All 

ChIP buffers contained 1 µg/ml pepstatin, 1 µg/ml leupeptin, 1 µg/ml aprotinin, and 1 mM 

fresh PMSF.   Stock concentrations of 0.5M Tris, pH 7.5 and 8.0 were prepared by adding 

the recommended amounts of Trizma-HCL and Trizma-base using the Trizma chart to 

achieve the appropriate pH at 250C.  The pH of the solution was then measured using at 

250C using a Mettler Toledo pH meter. Hepes, buffer pH 7.5 (1M) was prepared and pH 

was adjusted using 8 N NaOH.  Cells were pelleted and frozen at -800C or processed as 

described below.   

 Protein G Sepharose Bead preparation and Immunoprecipitation  

 The 300 mg of liver, 100 mg of brain, or 2.5 x106 L1210 cells were resuspended in 

300 µL samples of lysis buffer 25 mM Tris buffer, pH 7.5 (containing 150 mM NaCl, 5 

mM EDTA, 1%Triton X-100, 0.1 % SDS, and 0.5 % sodium deoxycholate), and sonication 
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was carried out in a bath sonicator (Diagenode) to achieve 100-300 bp DNA 

Fragmentation of the DNA was followed by reverse cross-linking and purifying DNA (for 

details see below) from 20 µl aliquots of sample followed by visualization of fragment 

sizes on a 1% agarose gel stained with Ethidium Bromide (Fig 2-8) . Sonication was 

performed with repeated cycles of 30 sec pulse and 30 sec off, followed by the addition of 

fresh cold ice water to the bath. The total sonication time for each sample was 25 minutes 

(liver and brain) and 20 minutes (L1210 cells). Following sonication, the samples were 

spun down at 21,000 x g, at 4o C for 10 minutes.  The supernatant was removed and all the 

samples were pooled for each tissue.  The samples were then diluted to achieve the final 

tissue ratios used in the immunoprecipitation: 50 mg (liver), 30-40 mg (brain), and 1-

2.0x10 6 L1210 cells in 300 µl of lysis buffer.  Three hundred microliters of sample lysates 

were aliquoted into 1.5 ml centrifuge tube.  Thirty microliters of Protein G-Sepharose 

beads/sample were placed in a 1.5 ml centrifuge tube.  The beads were aliquoted using a 

20-200 µl range pipet tip with the end cut off.  This assisted in pipetting the beads.  One 

hundred microliters of beads were washed with 500 µl of freshly made lysis buffer and 

spun down at 240 x g at 40C for 1 min.  This was repeated three times.  One hundred 

microliters of lysis buffer was then added to the beads to obtain a 50% lysis buffer/Protein 

G Sepharose bead mix (final volume = 200 µl).  Thirty µl of 50% slurry will be used for 

each reaction.  Prior to use, the beads are blocked to help minimize non-specific IgG 

binding.  To block 200 µl of a 50% slurry mix, 0.33 mg/ml of BSA and sonicated lambda 

are added to the 50% slurry (0.05 mg/ml per 30 µl or per reaction).  Three hundred 

microliters of lambda were sonicated for 5 min set to 30 sec pulse and 30 sec off.  The 
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50% slurry with BSA and sonicated lambda were rotated for 2-3 hours end-over-end at 

40C.  The beads were spun down at 240 x g at 40C for 1 min.  The supernatant was 

removed and the beads were washed with 500 µl of lysis buffer and spun down at 240 x g 

at 40C for 1 min.  This was repeated three times.  The beads were then resuspended in 100 

µl of lysis buffer to achieve a 50% slurry mix.  The samples were incubated with 30 µl of 

50% slurry for 1 hr at 4°C. This step is referred to as preclearing.   Note: It is important to 

gently mix the 50% slurry with a pipet tip before pipetting.   Following incubation, the 

beads were spun down at 240 x g at 40C for 1 min.  The clarified lysates were placed in a 

fresh tube and the beads discarded.   The lysates were rotated at 4°C overnight with 5 µg of 

antibodies against the following: Total Histone H3 (Abcam, ab1791), mono-methyl-

H3K27 (Upstate, 07448), di-methyl-H3K27 (Upstate, 07452), tri-methyl-H3K27 (Upstate, 

07449) tri-methyl-H3K9 (Upstate, 07442), tri-methyl H3K4 (Upstate, 07473), acetyl-H3 

(Upsate, 06599), acetyl-H4 (Upstate, 06598), acetyl-H3K9 (Upstate, 07352), and IgG 

(Upstate Biotech, 12-371). Ten µg of antibody against tri-methyl H3K36 (Abcam, ab9050) 

was also used.  Thirty microliters of 50% slurry of lysis buffer/Protein G-Sepharose beads 

were added to the antibody-lysate mix and rotated at 4°C for 1 hour.  The beads were spun 

down (as above), the supernatant was removed and discarded.  The supernatant for the 

sample with IgG antibody was placed in a fresh 1.5 ml centrifuge tube so that it could be 

used later as input DNA.  The beads were washed two times with RIPA buffer (150mM 

NaCl, 50 MM Tris, pH 8, 0.1% SDS, 0.5% NaDoc, 1.0% NP-40), and once with high salt 

buffer (500 mM NaCl, 50 mM Tris, pH 8, 0.1% SDS, 1.0% NP-40), then LiCl buffer (250 

mM LiCl, 50 mM Tris pH 8.0, 0.5% Na deoxycholate, 1.0% NP-40), and two times with 
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Tris EDTA, pH 8.0 (10mM Tris, 1mM EDTA, pH 8.0) (TE).  For these washes, 500 µl of 

buffer was added to the beads and the suspension was rotated end-over-end for 10 minutes 

at 4°C in 1.5mL centrifuge tubes.  Following these washes, 200 µl of elution buffer (2% 

SDS, 10 mM DTT, 0.1M NaHCO3) was added to the beads and the samples were rotated 

for 15 minutes at 250C.  This step caused the release of proteins and protein/DNA 

complexes bound to the antibodies by denaturing the antibodies and breaking the 

disulphide linkages between the large and small IgG subunits.  The elution was performed 

twice.  Concentrated (4M) NaCl was added to the eluted materials to a final concentration 

of 0.2M and they were placed at 65 ºC overnight to reverse the formaldehyde induced 

cross-links.   The saved input material was also placed at 65 ºC.   

 DNA purification 

 Following these incubations, 1 ml of 100% ethanol was added to the 400 µl of 

eluted material and the mixtures were held at -800C for 30 minutes to precipitate DNA.  

Samples were spun down, washed with 70% ethanol, and resuspended in 180 µl of TE.   

The samples were incubated with 1 µl of 10 mg/ml of RNAse A, and incubated at 370C for 

30 min.  Twenty microliters of 5x Proteinase K digestion buffer (50 mM Tris, 25 mM 

EDTA, pH 8.0, 1.25% SDS) and 1 µl of 20 mg/ml Proteinase K to the samples and they 

were incubated at 420C for 1 hour.  Incubation was followed by phenol chloroform 

extraction by adding equal volume of phenol:chloroform (1:1), pH 6.8.  The samples were 

vortexed and spun at 16,000 x g for 5 min at 250C.  The aqueous phase was recovered and 

precipitated in 2.5 x the volume of ice-cold 100% ethanol and 1/10th the volume of 3M Na 

acetate, pH 5.2, and 1 µl of glycogen (20 µg) as a DNA carrier.  The samples were held at -
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800C for 30 min or overnight.  The precipitated DNA was pelleted by centrifugation at 

20,000 x g for 10 minutes at 40C.  The samples were then washed with 1 ml of ice-cold 

70% ethanol and again pelleted.  The ethanol was decanted and the pellet was allowed to 

air dry for 5 min on the bench top.  Samples were then resuspended in a final volume of 

100 µl of TE.   

 The input material not precipitated before treatment was treatment with RNase A 

and Proteinase K.  The steps following Proteinase K digestion were the same for the input 

material as were described for the samples.  Real-time PCR was used to quantitate the 

content of DNA fragments using a 1 µl aliquot of each sample (see below for details).  

Real-time PCR reactions PCR primer pairs amplified regions of genomic DNA every 1.5-

2.0 kb across the length of the fpgs gene (Fig 2-11).  Prior to amplification of the 

immunoprecipitated material with primers specific for the mouse fpgs gene, real-time PCR 

was prepared using sample DNA and primers specific for regions in the gapdh and globin 

promoters and coding regions.  These data served as controls for each immunoprecipitation 

with a given antibody. The GAPDH and Globin data is not presented in this chapter.   

 
Chromatin immunoprecipitation-RNAPII and transcription factor studies.  

 The ChIP protocol described above was applied to study the distribution of 

RNAPII bound over smaller overlapping segments of the fpgs promoters and the 

distribution of transcription factors near P2. Cross-linked DNA fragments were sonicated 

down to 100-300 bp, as above. Lysates were rotated at 4ºC overnight with 8 µg of anti-

RNAPII (Upstate Biotech, 05-623), 4 µg anti-IgG (Upstate Biotech, 12-371), or 5 µg of 
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antibodies against phosphoserine 5 peptide from RNAPII (Abcam, ab5131), phosphoserine 

2 peptide from RNAPII (Abcam, ab5095), TBP (Santa Cruz, sc-273), TAFIIp250 (Santa 

Cruz, sc-17134), TFIIB (Santa Cruz, sc-225), NELF-A (Santa Cruz, sc-23599), or SP1 

(Santa Cruz, sc-59). Real-time PCR was performed with 1 µl of final sample dissolved in 

100 µl of TE.  The primer sets used covered the entire upstream and downstream 

promoters of the fpgs gene.  The P1 fpgs promoter region was divided into five segments, 

using primers that amplified nucleotides -379 to -119, -126 to 30, 7 to 153, 121 to 288, and 

287 to 449 relative to the upstream transcriptional start site. The P2 fpgs promoter was 

divided into six fragments amplifying nucleotides -698 to -469, -475 to -333, -340 to -167, 

-194 to -52, -83 to relative to the transcriptional start site (Fig 2-, Appendix).  In the studies 

using antibodies against general transcription factors the primers sets used were specific to 

P2; P1 was not amplified in these studies.  The primer sets used across P2 for the general 

transcription factor studies amplified fragments -340 to -167, -194 to -52, -83 to relative to 

the transcriptional start site (Fig 2-18).  The GAPDH and Globin primer sets discussed 

above were also used in these experiments as controls (data not shown).   

 

Peptide competition study using total RNAPII, phospho-Serine 5, and phospho-Serine 

2 RNAPII specific antibodies.   

 The specificities of the antibodies against RNAPII phosphorylated serine-5 CTD 

peptide and phosphorylated serine-2 CTD peptide were determined by incubating L1210 

cell lysates and each antibody with increasing amounts of the serine 2 phosphopeptide 

(Abcam, ab 12793), serine 5 phosphopeptide (Abcam, 18488) and unphosphorylated CTD 
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peptide (Abcam, 12795) (See Table 2-1).  Five µg of each antibody was rotated with either 

0.1, or 1, or 10 µg of peptide in 100 µl of lysis buffer for three to four hours at 40C.  In 

these studies, sonication of 2-3 million L1210 cells was carried out in 200 µl.  The beads 

were prepared as discussed in the previous section.  The lysates were prepared as discussed 

in the previous section.  Following the pre-clearing step discussed above, the 100 µl 

antibody-peptide mix was added directly to the 200 µl of L1210 samples.  The rest of the 

ChIP protocol was carried out as described above.   Peptide inhibition for α-phospho-

Serine 5 was determined using primers amplifying a region of the P2 fpgs promoter, and 

specificity for α-phospho-Serine 2 was tested across a fragment of the gapdh coding 

sequence.  

 

Primer Design 

 Primers were designed with the assistance of the oligos deoxynucleotides analyzing 

tools on the IDT website (http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/).  

The primers selected had a melting temperature ranging from 56oC - 60oC, a length 

between 18-24 bp, and a GC content between 50-60%.  Primers that generated hairpins, 

homo-dimers, or hetero-dimers between sense and antisense primers with a delta G value 

larger than -6.0 kcal/mol were not selected.  The delta G value was determined using the 

oligo analyzer (see above) on the IDT website.  The mouse genome was searched for each 

primer sequence in order to identify primers that included sequences with high similarity to 

other genomic regions using the University of California Santa Cruz Genome Browser.  If 

a high degree of similarity was detected primers were redesigned. Twenty-five nmoles of 
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each primer purified by standard desalting were ordered through the IDT website.  The 

lyphollized primers were resuspended in High Performance Liquid Chromatography 

(HPLC) grade water (Fischer) to achieve a stock concentration of 150 µM.   Primers were 

further diluted to 15 µM in HPLC grade water before they were added to any Polymerase 

Chain Reaction (PCR) mix.   Primers designed following the parameters discussed above, 

usually allowed correct product formation in end-point or semi-quantitative PCR.  

However, even with the most stringent design it was sometimes the case that primer sets 

were not adaptable to Real-time PCR.  In these cases, low-levels of non-specific products 

were formed in the PCR that were not detectable by visualization on agarose gel, but were 

detected as fluorescence in the Real-Time PCR machine.  When multiple products are 

detected in a Real-Time PCR assay, the data is not interpretable.  As a result, it proved 

useful to run test Real-Time PCR reactions prior to using a primer set in large-scale.  For 

these preliminary experiments, 0.8 ng and 200 ng of genomic DNA and water served as the 

templates, and the reactions were performed using the real-time protocol described below.  

In this experiment, a single peak in the melting curve would indicate that the primer pair 

was suitable for real-time applications. Ten microliters of each reaction was also visualized 

on an agarose gel in order to identify primer dimers or non-specific products.  The 0.8 ng 

and 200 ng of genomic DNA and water were used, because occasionally, they gave 

different results.  There were several times when primer pairs would work well at 200 ng, 

but result in multiple products, or primer dimers, at low concentrations of template DNA 

or in the reactions where only water was added.  
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Semi-quantitative PCR  

 Semi-quantitative PCR was used in the initial studies examining RNAPII residence 

across P1 and P2 in L1210 cells and mouse liver.  The HotStar Taq Plus Master Mix 

(Qiagen, Product # 203643) was used for all Semi-Quantitative experiments.  A master 

mix was prepared using the HotStar Taq Mix, HPLC water, and 0.3 µM of sense and 

antisense primers.  Twenty four µl of master mix was distributed into PCR strip tubes 

(Biorad).  One µl of sample DNA or HPLC water or a fraction of input DNA (0.1%) was 

added to triplicate tubes.  The strips were placed in the 96-well plate of the BioRad PCR 

machine and PCR was performed with the amplification conditions 95oC, 45 sec; 57oC, 45 

sec; 72 oC, 45 sec, with a final extension at 72 oC for 5 minutes.  All samples were first 

incubated at 95 oC for 15 minutes to activate the complex Taq polymerase.  The number of 

PCR cycles used varied from 26 to 36.   Initially, samples were removed at the cycles 26, 

28, 30, and 32, following incubation at 72oC, and transferred to a second 96-well format 

hot block set at 72oC, to allow for the final extension incubation of 5 minutes for each 

sample. Ten microliters of each reaction mix were applied to a 1% agarose gel and 

separated DNA fragments were visualized following staining with ethidium bromide. The 

cycles selected varied and were chosen to capture the amplification reaction in the 

exponential range. 

 
Real –time PCR 
 
 Real-time PCR was performed using Quantitect Sybr Green PCR Master Mix 

(Qiagen) and BioRad DNA Engine Peltier Thermal Cyclers with Chromo 4 Real-Time 
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Detector attachments. A master mix was prepared using the Sybr green mix, HPLC water, 

and 0.3 µM of each sense and antisense primers.  Seventy-two microliters of the master 

mix was aliquoted into 0.6 ml PCR tubes.  Three microliters of standard, sample, or input 

DNA or HPLC water were added to the appropriate PCR tubes (sub-master mix).  As 

above, a fraction of the input DNA (0.1%) was used.  The sub-master mix was vortexed 

and collected by brief centrifugation, and 25 µl of the mix was transferred to the Biorad 

Low-White Tube PCR strips in triplicate.  Four standard reactions were prepared using 5-

fold serial dilution of sonicated mouse genomic DNA (100 ng/µl, 20 ng/µl, 4 ng/µl, 0.8 

ng/µl) (details on standard curve below). The reactions were pre-incubated at 95oC for 15 

min and the amplification condition for each primer pair were 95oC for 45s; 58 oC for 45s, 

72 oC for 45s followed by a final extension time at 72 oC for 5 min.  Forty PCR cycles were 

performed for the real-time studies and a plate read step was programmed at the end of 

each cycle to capture the fluorescence in each tube.  Melt curve analysis was programmed 

at the end of the run to measure fluorescence of each reaction in one degree increments 

between the temperatures of 50 oC- 100 oC.  The melt curve analysis is an essential step in 

clarifying whether one specific product was amplified in the reaction (see below).  

 

Analysis of Real-time PCR data 

 The standard curve is an essential component to analyzing real-time PCR data 

when using multiple primer sets.  The standard curve is generated by plotting the log of the 

dilution factor against the Ct value (see below) obtained during amplification of each 

reaction.  The equation of the linear regression line and the coefficient of determination 
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(R2) were determined using the Opticon software and a R2 value greater than 0.99 

indicated that primer pairs were amplifying optimally.  The data obtained from the samples 

will be assigned a value based on the Ct (see below) values determined for the standard 

reactions.   

 The threshold cycle number (CT), or the cycle number at which amplified product 

accumulates to a level where fluorescent signal is detected, was used  to quantify the 

amount of DNA in each reaction.  Measured fluorescence for sample and input reactions 

were converted into values relative to mouse genomic DNA by comparing the CT of the 

samples to the CT values determined for the standard reactions.  The values for the 

triplicate samples were averaged and divided by the averaged input values.  

 Melt curve analysis was used to identify if multiple products were formed during 

the different reactions.   In this analysis, fluorescence in a tube is measured after the 

temperature is raised in 10C increments.   As the temperature increased, double-stranded 

DNA products melt and fluorescence detected decreases.  The negative first derivative was 

plotted as a function of temperature using the Opticon Monitor Software provided with the 

BioRad machines.  Different products will melt at different temperatures and in this case 

the melt curve profile will have multiple peaks.  A single peak indicated a specific product 

and data with multiple peaks was discarded as representing multiple products. Standard 

deviations were calculated using the formula: sample/input X (sqrt ((delta input/input)2 + 

(delta sample/sample)2)). 
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RESULTS 

DNA cytosine methylation near the P1 and P2 promoters. 

 A previous student in this laboratory, Dr. Fiona Turner, initialized the studies on 

the epigenetic control mechanisms operative at control of the two mouse fpgs promoters by 

by performing bisulfite sequencing (Fig. 2-9) and DNAse hypersensitivity (Fig. 2-10) 

assays using genomic DNA surrounding the two fpgs promoters. The distribution of CpG 

dinucleotides in the regions of the two fpgs promoters differed significantly.  The P1 

promoter is in a region in which CpG dinucleotides are sparsely represented (19 

dinucleotides distributed over the region from -650 to +900 nt, relative to the first 

transcriptional start site), whereas the P2 promoter is embedded in a CpG island 

(%GC=58.9, ObsCpG/ExpCpG= .71, CpGs distributed over the 1000 nt centered on the 

first transcriptional start site), as defined in (232).   

 We were very surprised by the results of the bisulfite sequencing.  The methylation 

patterns defined over the two fpgs promoters were strikingly different (Figure 2-9).  DNA 

from mouse liver showed an undermethylated state over P1, whereas L1210, bone marrow, 

and brain DNA had virtually quantitative methylation at each CpG over this same region.  

In striking contrast, the CpGs surrounding P2 were completely unmethylated in all tissues 

studied, including normal and neoplastic tissues in which the P2 promoter was 

transcriptionally active (L1210 and marrow).  Liver, in which transcripts initiating at P2 

were barely detectable, and brain, in which the entire fpgs gene was transcriptionally 

inactive (Figure 2-9) (Table 2-2).   These data suggested that the two fpgs promoters 

represented two interesting cases, one where hypomethylation of a CpG-sparse promoter 
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predicted transcriptional activity, and the second a tissue-specific CpG-island promoter 

that was not methylated in any tissue, even those in which it was not expressed (Figure 2-

9).  

 

Mapping of chromatin structure near the two fpgs promoters. 

 The chromatin state of a region surrounding a promoter influences the availability 

of DNA cis elements to cellular trans factors, and when nucleosomes are tightly packed 

these interactions are restricted and transcriptional activation prevented.   Dr. Turner asked 

if the chromatin state of P1 and/or P2 of the fpgs gene determined the tissue-specific 

activity of the two promoters.  DNase I hypersensitivity assays were used to determine the 

accessibility of these regions to proteins by determining the cleavage patterns in genomic 

DNA after exposure of intact nuclei to DNase I (Figure 2-10).  At low levels of DNase I 

digestion, a full-length 8.5 kb HinDIII fragment hybridized to the probe for the P1 region 

but, with increasing amounts of DNase I, a smaller fragment (4.4 kb) was detected in DNA 

extracted from renal and hepatic nuclei (Fig. 2-10, left panels).   This band was not seen in 

DNA extracted from mouse L1210 leukemia cells and mouse bone marrow, two dividing 

cell types that do not utilize the P1 promoter, nor was it observed in DNA from brain 

nuclei, which do not transcribe the fpgs gene from either promoter.  When the P2 region 

was examined using a probe from the downstream HinDIII fragment, a DNase 

hypersensitivity site was detected in DNA extracted from nuclei from all the tissues 

examined, i.e., L1210 cells, bone marrow, liver, kidney, and brain (Fig. 2-10, right panels).  

The DNase hypersensitivity sites found for each promoter mapped to positions about 130-
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150 bp upstream of the transcriptional start sites defined as diagrammed in Fig. 2-10.   This 

implied that the chromatin configuration centering on 130-150 bp upstream of P1 allowed 

access to this region only in those tissues that utilize this promoter (liver and kidney), but 

that the chromatin encompassing the P2 promoter was accessible in all tissues studied, 

whether or not this promoter was transcriptionally active.   

 Taken together, the DNA methylation and DNAse hypsersensitivity data indicated 

that epigenetic mechanisms working upstream of P1 may be causally involved in 

determining the activity of this promoter, but neither DNA methylation nor gross 

chromatin structure predicted the activity of P2 in the different tissues.  We sought a more 

complete understanding of the epigenetic controls working at the fpgs gene suggested in 

these original experiments. We focused our efforts on profiling several histone PTMs 

across the entire 20 kb fpgs locus in tissues using P1 (mouse liver), using P2 (L1210 cells), 

and in a tissue where the gene is completely silenced (mouse  brain).  The questions we 

aimed to address in these studies included: 1.  Are the patterns of histone PTMs across P1 

different between tissues and is the repressive nature of DNA methylation reinforced by 

changes in these modifications? 2. Do the histone PTMs of nucleosomes spanning P2 in 

mouse liver explain why P2 expression is restricted in this tissue?  3.  In brain, is the fpgs 

locus marked with histone PTMs commonly associated with a silenced/heterochromatic 

state?  and 4.  Are the patterns of histone PTMs across the dual promoter fpgs locus similar 

to those previously described for a highly expressed single promoter gene by Vakoc et. al 

(247)?   
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 The histone marks studied were selected based on evidence that defined role(s) for 

these PTMS in transcriptional activation or silencing in yeast or mammalian cells or on a 

relationship with DNA methylation or proteins mediating DNA methylation.  We chose to 

probe for antibodies against histone H3 acetylation (H3Ac), histone H4 acetylation 

(H4Ac), histone H3 lysine 36 tri-methylation (H3K36me3), histone H3 lysine 27 mono-, 

di-, and tri-methylation (H3K27me1, me2, and me3), histone H3 lysine 9 di- and tri 

methylation (H3K9me2 and me3), histone H3 lysine 4 di- and tri- methylation (H3K4me2 

and me3), and total histone H3.  Composite profiles of these histone PTMs obtained from 

work performed at single genes in yeast are reflected in Fig 2-6.  We used these antibodies 

in our ChIP protocol for the individual tissues followed by Q-PCR to generate tissue-

specific histone PTM profiles across the 20 kb fpgs gene.  Prior to performing Q-PCR 

using the fpgs gene specific primers the enrichment of these antibodies in all three tissues 

where tested using primers in the GAPDH promoter and coding region and the globin 

promoter and coding region.  Samples immunoprecipitated with an antibody raised against 

IgG were also analyzed as a non-specific background control in all of our experiments.  

Previous to our studies, Vakoc et. al mapped several histone PTMs (H3K4me3, H3K9me3, 

H3K27me1, 2, and 3, and H3K36me3) across the very highly expressed PABPC1 gene and 

these studies demonstrated the power of following histone marks along the body of a gene 

(247).  We used this literature precedent as a guide to select regions of genomic DNA of 

the fpgs gene for amplification by Q-PCR. Primer pairs were designed to amplify regions 

every 1.5-2.0 kb down the entire length of the gene.  The placement of these primer pairs is 

depicted in Figure 2-11.  
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ChIP walking across the fpgs gene describes the level of histone H3 in multiple mouse 

tissues. 

 In our initial studies we examined the density of nucleosomes over the length of the 

20 kb fpgs locus in L1210 cells, mouse brain, and mouse liver using an antibody to total 

histone H3 levels (Figure 2-10). The data obtained from these experiments were critical to 

the interpretation of the histone PTM maps generated in the studies to follow (Figure 2-

10).  In order to understand the meaning of changes in levels of histone PTMs, we needed 

to ensure that observed shifts were not simply the result of changes in total nucleosome 

density.  In theory, ChIP data for modified histone residues should be expressed as a ratio 

with total histone H3 to allow an estimation of the degree of modification per molecule of 

histone H3.  For the most part, the data obtained in the histone PTM experiments were 

expressed as primary ChIP signals, to allow the reader to come closer to seeing the data, 

rather than heavily manipulated ratios.   In a few cases, we used a ratio of histone PTM 

ChIP signal to total histone H3 signal to account for histone density changes (Fig 2-17).   

 In our studies, the density of histone H3 reached a local minimum over the P2 

promoter in L1210 cells, mouse liver, and brain and co-localized with the DNase 

hypersensitivity site mapped to this P2 region in these tissues (Figure 2-10).  Somewhat 

surprisingly, a similar histone H3 local minimum was not seen in liver over the P1 region, 

in spite of the DNase hypersensitivity site over that region (Figure 2-10). There was an 

observable increase in total H3 ChIP signal detected in L1210 cells and brain of the 

genomic regions starting 5 kb upstream to 12 kb downstream of the P2 promoter. (Figure 

2-10) This pattern was not present in mouse liver.  These data indicate that the position of 
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nucleosomes were altered by high levels of transcriptional elongation across the genomic 

regions surrounding the P2 promoter in mouse liver.   

 

Histone acetylation concurs with transcriptional initiation over P1, but not P2. 

 Previous studies in yeast and human cells indicate that active promoters have 

substantial acetylation of lysines in the N-terminal peptides of histones H3 and H4 (144, 

186). We probed the histones decorating the entire length of the fpgs gene, including 

segments containing P1 and P2 promoters, by ChIP using antibodies against acetylated 

histone H3 at lysines 9 and 14 and histone H4 at lysine 16 (Figure 2-12).  As expected, 

abundant acetylation of both histone H3 and histone H4 was detected in mouse liver over 

P1 (Figure 2-12), high levels of acetylation started 1 kb upstream of the promoter and 

extended 3 kb into the fpgs gene.  In L1210 cells, the nucleosomes over P1 were not 

enriched in acetylated histone H3 or histone H4 (Figure 2-12), but the levels increased 

substantially starting 2 kb upstream of P2 and spanned 2 to 3 kb for either histone H3 or 

histone H4 acetylation, respectively (Figure 2-12).  The large regions of DNA over which 

histone H3 and histone H4 were acetylated were very surprising and were only captured 

because we followed the histone PTMs across several DNA segments that sampled the 

length of the entire gene. Interestingly, histone H3 and histone H4 acetylation was also 

found over P2 in mouse liver (Figure 2-12), although the span of genomic DNA over 

which histone acetylation was found over P2 in liver was much narrower than seen in 

L1210 cells (> 1.5 kb) (Figure 2-12).  This difference was repeatable and was seen with an 

antibody to H3K9Ac.  In mouse brain, a tissue in which both P1 and P2 are 



www.manaraa.com

 

 56 

transcriptionally inactive, the pattern of H3 acetylation was almost identical to that 

detected in L1210 cells (Figure 2-12), with a substantial level of histone H3 detected 2 kb 

upstream to 1 kb downstream of P2 (Figure 2-12).  Interestingly, histone H4 acetylation 

detected in mouse brain was at undetectable levels upstream of P2 (Figure 2-12), unlike the 

levels detected in both liver and L1210 cells, and the span of nucleosomes acetylated at the 

region surrounding P2 was narrower than the signal measured over P2 in L1210 cells 

(Figure 2-12).   These data suggest that deposition of histone H4 acetylation may be more 

closely linked to the transcriptional activity of a particular locus than histone H3 

acetylation.  Since histone acetylation is thought to mark an open promoter, finding H3 and 

H4 acetylation over P2 in mouse liver and brain raises the question of why P2 is not 

actively firing in these tissues.  

 The similarities detected between L1210 cells and mouse brain in the data on 

histone acetylation profiles in Figure 2-12 and the data to follow were, at the time, very 

surprising to us.  We thought that the brain experiments would be an excellent control for 

our studies, which were originally meant to compare liver in which P1 is active and L1210 

in which P2 is active. Our observations were put into perspective by studies in a hallmark 

genome-wide paper from the laboratory of Dr. Richard Young (87), which was published 

as we were preparing this study for resubmission to Molecular and Cellular Biology.  

Young’s work concluded that, contrary to common belief, the promoter regions of most of 

the protein-coding genes in human embryonic stem cells were bound by proteins indicative 

of the process of transcriptional initiation (87).  They also extended these observations to a 
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subset of differentiated cells. Since then other genome-wide studies have confirmed and 

extended these conclusions as will be presented in the discussion.    

 

Histone H3 lysine 4 methylation over P1 and P2.    

 In an effort to understand the differential control of P1 and P2 in different tissues, 

we compared the patterns of histone H3 methylation over the length of the fpgs gene in 

liver and leukemic cells.  These results were particularly meaningful when related to the 

pattern previously seen at a very highly expressed single promoter gene (247).  Di- and tri- 

methylation of histone H3 at lysine 4 have been found to be marks of euchromatin and 

active transcription in yeast (186) and human cells (144).  The distrubution of di- and tri- 

methylation on nucleosomes covering an active gene have been shown to be quite 

different, as shown in Figure 2-6.  Studies performed in yeast at single genes have 

determined that di-methyl lysine 4 of histone H3 is present throughout euchromatic regions 

of chromatin, whereas tri-methylation of this residue is restricted to the 5’ end of genes 

initiating transcription (186, 207).  We examined the patterns of both di- and tri-methyl 

lysine 4 of histone H3 across the fpgs locus under different circumstances.  In L1210 cells, 

the peak of di-methylation of histone H3 at lysine 4 encompassed the P2 promoter and 

spanned ca 4 kb of chromatin region (Figure 2-13).  H3K4me2 was detected throughout 

the entire fpgs locus in mouse liver, with a peak spanning the 2 to 3 kb of chromatin 

downstream of P1, and a second narrower peak 1 kb downstream of P2 (Figure 2-13).  

Interestingly, these results paralleled almost exactly the patterns established using 

antibodies against acetylated histone H3 (Figure 2-13) in L1210 cells and mouse liver.  In 
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striking contrast, trimethylation of histone H3 at lysine 4 formed a distinct peak over P1 in 

liver and P2 in L1210 cells; these peaks continued for 3-4 kb after the transcriptional 

initiation site (Figure 2-14). Surprisingly, a second smaller peak of H3K4me3 was found 

over P2 in mouse liver (Figure 2-14). We wondered if this low-level of signal reflected the 

processes producing the minimal amount of transcript generated from P2 in mouse liver 

(Table 2-2).  Rather surprisingly, the pattern detected in brain was exactly the same as that 

seen in L1210 cells, in spite of the fact that transcription at P2 was high in L1210 and 

undetectable in mouse brain (Table 2-2).  Clearly, the reasons for this histone PTM across 

P2 in either mouse liver or brain were more complicated than we originally thought.  We 

concluded from this set of studies that the H3K4me3 mark over the P1 promoter exactly 

concurred with transcriptional activity, but there was no such relationship found over the 

CpG-island embedded P2. 

 One major limitation of the ChIP data obtained using mouse liver, brain, and L1210 

cells was that the enrichment signals between tissues were not quantitatively comparable. 

The variations in tissue-type, treatment of starting material, and the efficiency of cross-

linking procedures in different tissues prevented quantitative analysis across tissues. This 

limited the conclusions we were able to make from these data in a few cases and made 

interpretation challenging across samples.  For example, the small peak of H3K4me3 

detected over P2 in liver was similar in breadth to the peaks detected in L1210 cells and 

mouse brain (Figure 2-14).  However, based on our experience with the antibodies 

generated against histone PTMs, the signal detected over P2 in mouse liver was unusually 

low and most likely substantially less than the levels detected in brain.   
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Histone H3 lysine 9 and lysine 27 methylation over P1 and P2. 

 Methylation of H3K9 and H3K27 has been linked to the formation of 

heterochromatic regions resulting in the repression of transcription in yeast and 

mammalian cells (225).  More recently, H3K27me1 and H3K9me3 have been found in the 

coding regions of active mammalian genes (247).  We examined the modifications of these 

lysines within histone H3 at the fpgs gene in order to determine if they were involved in 

the silencing of P2 in mouse liver and/or either promoter in mouse brain.  We were 

particularly interested in the methylation status at histone H3K9 because of the well-

studied relationship between DNA CpG methyl-binding proteins (i.e. MeCp2) and histone 

methyltransferases responsible for the histone H3K9me PTM (i.e. SETB1) (Figure 2-15).  

We expected to detect H3K9me2 and/or me3 across regions surrounding P1 in tissues 

where the surrounding DNA was found methylated, but not in mouse liver where lysine 9 

of histone H3 was acetylated (Figure 2-15).  In mouse liver, H3K9me3 was not detected 

anywhere along the fpgs gene (Figure 2-15).  Surprisingly, H3K9me3 was also low across 

fpgs in L1210 cells. Dr. Turner had previously probed the P1 and P2 promoters in L1210 

cells and mouse liver using an antibody against H3K9me2 in a ChIP assay.  In those 

studies, H3K9me2 was not present at either promoter in liver or L1210 cells, but was 

found over the silenced globin promoter that was used as a positive control. We are still 

puzzled by the fact that H3K9 methylation was not detected over P1 in L1210 cells.  It is 

interesting to note that few, if any, studies have examined the coexistence of H3K9me and 

DNA methylation at promoters that are as CpG sparse as P1, and it may be the case that 

this relationship only exists across regions of DNA that are CpG dense.    
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 Mono-methylation of H3 at K27 was present across the fpgs gene in both liver and 

L1210 cells (Figure 2-16), in agreement with recent studies that indicate H3K27me1 as a 

marker of actively expressing genes in euchromatin (247).  However, this mark was also 

abundant over the fpgs locus in brain (Figure 2-16).   Within the accuracy of the DNAse 

hypersensitivity mapping estimates, the minimum of H3K27me1 found at P2 in all three 

tissues (L1210, liver, and brain) co-located with the DNase I hypersensitivity site in this 

region (Figure 2-16).  Similar profiles of H3K27me3 were detected throughout the fpgs 

gene in all three tissues studied (Figure 2-16) and the levels measured were relatively 

constant across the body of the gene, particularly when the changes between fragments 

were compared to the major shifts observed in profiles of H3K4me3 (Figure 2-14) and 

H3K27me1 (Figure 2-16).  We took this to suggest that trimethylation of lysine 27 of 

histone H3 was not causing the silencing of P2 in mouse liver or the complete silencing of 

the fpgs gene in mouse brain, in spite of the fact that several examples have been described 

where H3K27me3 causally silences mammalian genes through the recruitment of 

Polycomb complexes which results in the formation of heterochromatin (225). 

Interestingly, H3K27me2 reached a discernible peak between the two promoters in L1210 

cells (Figure 2-16), with a maximum at 7 kb.  The loss of this ChIP signal in L1210 after 

P2 may indicate either the absence of H3K27me2 at nucleosomes decorating the active 

downstream region in leukemic cells or it might indicate the presence of a second PTM 

across this region that masks the epitope recognized by the H3K27me2 antibody, e.g., 

phosphorylated H3 S28. 

 



www.manaraa.com

 

 61 

Histone H3 K36 methylation across the mouse fpgs gene  

 Methylation of histone H3 at K36 in yeast has been linked to regions of 

transcriptional elongation and was shown to participate in the recruitment of the histone 

deacetylase (HDAC), Rpd3, downstream of an active promoter in several cases (38, 128, 

130).  The recruitment of HDACs to H3K36me3 limited histone acetylation within 

transcribed regions, and yeast strains mutant in either Set2, the histone methyltransferase 

responsible for methylation of lysine 36, or in subunits of Rpd3, exhibited increased 

acetylation in open reading frames and an increase in aberrant transcripts generated from 

cryptic promoters within these regions (38, 128, 130).  Hence, we thought H3K36me3 

would be a probable candidate for the suppression of activation of P2 in mouse liver.  We 

mapped the abundance of H3K36me3 across the fpgs gene to determine whether the spatial 

distribution of this PTM down the fpgs locus would suggest such a causal role (Figure 2-

17).  This did not seem to be the case, since H3K36me3 was present throughout the body 

of the fpgs gene, except for a distinct minimum at P2 in both liver and L1210 cells (Figure 

2-17).  The level of H3K36me3 near P2 was lower than could be explained by the 

decreased level of total H3 over this region, as best evidenced by the ratio of ChIP signal 

for H3K36me3 to total H3 (Figure 2-17).  The density of H3K36me3 then built up towards 

the 3'-end of the fpgs gene in both tissues, similar to the higher distribution of this mark 

towards the 3'-end of other yeast and mammalian genes (186, 247).  Interestingly, in both 

mouse liver and L1210 cells, the regions where H3K36me3 was found to be maximal were 

the regions in L1210 cells and mouse liver that histone acetylation reached a minimum.  

H3K36me3 was quite low across the body of the fpgs gene in brain from +3 to +15 kb, 
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consistent with the transcriptional inactivity of fpgs in this tissue (Figure 2-17).  However, 

a marked increase in this modification occurred at the very 3’ end of the fpgs locus in brain 

(Figure 2-17).  We considered two possible explanations for this observation: 1.  

H3K36me3 detected in brain at the fpgs locus reflects the level of this PTM that 

accumulated during development of mouse brain.   2.  The 3’end of the fpgs gene abuts the 

3’end of the eng gene, and the distal H3K36me3 observed is “spill over” from the 

neighboring gene.  Nevertheless, we could conclude that H3K36me3 was not directly 

involved in tissue-specific suppression of transcriptional initiation at P2, because it was 

low across this region in mouse liver.  

 

 Integration of information on histone PTMs and DNA methylation  

 The results from the experiments discussed above shed light on several aspects of 

the tissue-specific regulation of the two promoters of the fpgs gene.  We determined that 

epigenetic mechanisms were critically involved in the control of the P1 promoter.  Our 

studies implicated a link between DNA methylation and the tissue-specific silencing of a 

CpG-sparse promoter, a role for DNA methylation that had not yet been extensively 

studied. As we progressed through these studies, it became very clear that the two 

promoters were regulated by different mechanisms.  Likewise, the possibility that several 

mechanisms were either independently or in combination regulating the P2 promoter was 

suggested by comparing the data obtained from mouse liver and brain.   The histone PTM 

profiles described across the fpgs locus in mouse brain were almost identical to those 

found in L1210 cells, hence neither chromatin compaction nor histone modifications nor 
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DNA methylation were preventing this promoter from firing in mouse brain.  In contrast, 

the histone acetylation and methylation of lysine 4 of histone H3 were present but 

interestingly, lower over P2 in mouse liver.  We considered the possibility that the 

restricted histone PTM patterns detected over P2 in mouse liver reflected the small amount 

of transcription initiating at P2 in mouse liver (Table 2-2).   

 We hypothesized that the high level of transcriptional activity occurring at P1 in 

mouse liver may prevent successful transcriptional initiation at P2 in this tissue.  We 

proposed that elongation complexes generated at P1 were limiting assembly of pre-

initiation complexes at P2.    Previous studies using in vitro model systems supported the 

notion that when two promoters were arranged in tandem the activity at the upstream 

promoter greatly influenced the activity measured from the downstream promoter, a 

process referred to as transcriptional interference.  

  

RNAPII is detected across P1 and P2 in mouse liver.    

 In order to test this hypothesis, we designed a series of experiments to examine the 

presence of transcriptional complexes across P2 in mouse liver.   In the initial studies, we 

fine-mapped the residence of RNAPII over the two promoters using six overlapping PCR 

fragments covering approximately 1 kilobase of P1 and P2.  The location of the primers 

across both promoters is illustrated in Figure 2-18. ChIP was performed on L1210 cells 

and mouse liver using a commercial antibody generated against total RNAPII. In the initial 

studies, immunoprecipitated DNA was amplified using semi-quantitative PCR.  Ten 

microliters of each reaction were visualized on a 1% agarose gel.  As expected, RNAPII 
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was minimally detected over P1 in L1210 cells, when compared to the non-specific IgG 

control signal, but was found across most of the P2 promoter region (Fig 2-19). We 

detected RNAPII over P1 in mouse liver, but very interestingly, a substantial level of this 

protein was also found spread across most of the P2 promoter region (Figure 2-19).  

 The sensitivity of the semi-quantitative PCR was not sufficient to observe small 

changes between primer sets nor to visualize the differences quantitative aspects of the 

overall patterns of RNAPII residency between L1210 cells and mouse liver at P2.  Hence, 

Q-PCR was used in the next set of studies. The profiles of RNAPII residency generated 

from these second generation studies were far more straightforward to interpret then the 

gel pictures from the semi-quantitative experiments. For these experiments, we adapted the 

primers described in Fig 2-18 to our Q-PCR protocol, with the exception of primer set #1 

within the P1 region.  We were not able to design primers for this particular fragment that 

did not give multiple products (identified by the melt curve, see methods) in the PCR 

reactions.   

 

Fine-mapping of RNAPII across P1 and P2 in L1210 cells and mouse liver using Q-

PCR.  

 The use of Q-PCR confirmed our original observations and greatly extended our 

understanding of the difference between the pattern of RNAPII over P2 in L1210 cells and 

mouse liver. RNAPII detected at P1 was very low in L1210 cells, but was still present at 

levels significantly higher than the IgG controls across this region (Figure 2-20 B, left 

data).    In contrast, RNAPII occupancy was much greater in mouse liver near P1 
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fragments, peaking immediately 3' of the transcriptional start site and decreasing 

substantially between 200 and 400 bp downstream of the transcriptional start site (Figure 

2-20 B).  A similar pattern of RNAPII detection was seen for L1210 cells near the P2 

promoter as seen in liver near P1: polymerase occupancy peaked at or slightly after the 

transcriptional initiation site (Fig. 2-20 B, right data) and rapidly fell off downstream (see 

below). However, in mouse liver, RNAPII was resident over the entire P2 region, 

increasing before the DNase I hypersensitivity site defined in Figure 2-10 and remaining 

high over the P2 transcriptional start site and substantially downstream (Figure 2-20 B). 

The pattern of RNAPII observed at P1, in mouse liver, and at P2, in L1210 cells, reflected 

the profile of RNAPII previously described at the active p21 gene in a human colorectal 

carcinoma cell line.  Based on that study in Hct116 cells, we took the peaks of RNAPII 

around the TSS at P1 in mouse liver and P2 in L1210 cells to represent stalled molecules 

engaged in the assembly of initiation complexes (81). Likewise, the measurable decrease in 

RNAPII observed ca 400 bp into the fpgs gene at P1 in mouse liver (Figure 2-20 B), was 

evidence that elongating RNAPII complexes were moving rapidly through the coding 

region of the fpgs gene, and were much less likely to be captured then paused initiation 

molecules using ChIP technology.  The profile of RNAPII detected at P2 in mouse liver 

was unique because substantial levels of protein were found across the entire promoter 

region covering the linear DNA fragments previously mapped as requisite transcription 

factor binding sites (43)(Figure 2-20 B).  We wanted to determine if the accumulation of 

RNAPII detected at P2 in mouse liver was specific to this genomic region or was 

representative of processes occurring across the entire body of the fpgs gene in liver.  
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RNAPII has a bimodal distribution pattern along the fpgs gene in mouse liver.   

 We employed the primer sets used in the studies examining the histone PTMs to 

map the occupancy of RNAPII at intervals along the 20 kb fpgs gene.  We found striking 

differences between the patterns seen in mouse liver and leukemic cells (Fig. 2-20 A).  In 

L1210 cells, there was a single segment of DNA that co-precipitated with RNAPII, 

namely, which centered on the transcriptional start site at P2 (Figure 2-20 A).  In liver, 

there were two peaks, one centered on P1 and a second higher peak beginning at P2. Given 

that transcripts in mouse liver that initiate from P2 were barely detectable (Table 2-2), it 

was most likely that the RNAPII over the P2 promoter represented enzyme incorporated 

into elongation complexes that had originated at P1.  We designed several experiments to 

test this hypothesis.   

 

 The C-terminal domain (CTD) of RNAPII over P2 is phosphorylated at Serine 2 in 

liver.   

 It has been shown that phosphorylation of serine 5 residues in the repeated 

YSPTSPS peptide heptad in the CTD of RNAPII is present throughout transit of a gene, 

but is maximal on RNAPII found over the region of a gene associated with assembly of an 

initiation complex (81, 133).  In contrast, phosphorylation of serine 2 in this motif 

accumulates only as the elongation complex travels through a transcribed sequence and is 

highest over the cleavage/polyadenylation signal (81, 133). We hypothesized that if the 

RNAPII complexes detected over P2 in mouse liver were predominately engaged in 

transcriptional elongation, a measurable increase in the level of protein using the phospho-



www.manaraa.com

 

 67 

Serine 2 antibody would be located over P2, when directly compared to the amount 

measured over P1 in mouse liver.  Because these studies were critically dependent on the 

specificity of the antibodies for the phospho-serine 2, phospho-serine 5, and unmodified 

peptides, we tested the specificities of these antibodies under our ChIP conditions.   

 

Specificity of phospho-Serine 5 and phospho-Serine 2 antibodies 

 Phosphopeptides used to raise the Serine 5 and Serine 2 phosphospecific antibodies 

and an unphosphorylated peptide were purchased to test the specificity of the antibodies. 

Increasing concentrations of the peptides (0.1 µg, 1 µg, and 10 µg) were pre-incubated 

with the antibodies raised against phospho-Serine 5 and phospho-Serine 2 to determine 

how well these peptides would block the antibody-epitope recognition reaction (Figure 2-

21).  Following incubation, the antibody-peptide mix was added to sonicated L1210 cell 

lysates and the samples were incubated overnight at 4C and processed using our ChIP 

protocol (Figure 2-21).  Q-PCR was performed on immunprecipitated DNA using primers 

against the P2 fpgs promoter and a fragment within the GAPDH coding region, locations 

were RNAPII complexes phosphorylated at Serine 5 or Serine 2 were predicted to be 

enriched, respectively.  We chose the P2 fpgs promoter to assess the phospho-Serine 5 

antibody because it represents the 5’ end of a highly active gene, where serine 5 

phosphorylation of the CTD should be maximal (Figure 2-21 A).  Primers amplifying a 

portion of the coding region of the GAPDH gene, a region where serine 2 phosphorylation 

of the CTD of RNAPII should be substantial, were used to test the phospho-serine 2 

antibodies (Figure 2-21 B). The enrichment of the P2 promoter in the immunoprecipitated 
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DNA using phospho-Serine 5 antibody was severely blocked when the antibody was pre-

incubated with 1 or 10 µg of phospho-Serine 5 peptide (Figure 2-21), whereas incubation 

with either the unphosphorylated or phospho-Serine 2 peptide had no effect on the level of 

signal detected (Figure 2-21). The phospho-Serine 2 antibody was more sensitive to 

inhibition and detection of the GAPDH coding region within the samples was almost 

completely blocked by the addition of 0.1 µg of phospho-Serine 2 peptide (Figure 2-21), 

but neither the phospho-Serine 5 nor the unphosphorylated peptide affected the level of 

signal measured (Figure 2-21).  

  

RNAPII CTD post-translational modifications over P1 and P2 of the mouse fpgs gene. 

 We followed phosphorylation of the C-terminal domain of RNAPII at serine 5 and 

serine 2 over the two fpgs promoters as an index of whether the RNAPII detected at P2 in 

mouse liver was binding in a futile initiation complex or was engaged in elongating a 

transcript initiated upstream.   We used the signal measuring total RNAPII across the two 

promoters to normalize the levels obtained using the phospho-specific antibodies.  As 

expected, minimal levels of RNAPII were detected over P1 in L1210 cells (Figure 2-22)).  

In contrast, a substantial amount of RNAPII was detected over P2 in L1210 cells, peaking 

near the +1 position corresponding to the TSS of P2 (Figure 2-22).  Two experiments are 

presented for the RNAPII profiles over the two fpgs promoters in mouse liver. In the first 

experiment, serine 5 phosphorylated RNAPII over P1 was the most abundant signal, and 

total and phospho-serine 2 RNAPII signal were similar (Figure 2-23).  In the second 

experiment, phospho-serine 5 and total RNAPII levels were similar and phospho-serine 2 
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levels were much lower (Figure 2-23).  The patterns of enrichment signals detected for the 

three antibodies across either promoter in mouse liver or L1210 cells were not highly 

consistent between experiments. In fact, we found that changing the lot of antibody used 

could change the value of signal measured for a given antibody.     These data highlight the 

importance of analyzing changes in levels within one antibody and comparing between 

experiments using levels detected at a control gene.   In this case, we used the levels 

detected at P1 as the control to analyze the data collected for P2 in mouse liver.  The levels 

of phospho-Serine 5 and phospho-Serine 2 RNAPII were normalized to the amount of total 

RNAPII in order to identify when changes in phospho-specific RNAPII levels were the 

result of an increase in overall RNAPII levels or due to the hyperphosphorylation of the 

RNAPII molecules present at a given position (Figure 2-23). Interestingly, in mouse liver, 

substantial levels of both phospho-Serine 5 and phospho-Serine 2 RNAPII molecules were 

detected over P1 (Figure 2-23). Ratios of the phospho-specific signals relative to the total 

level of RNAPII were generated using data collected on a fragment centered on the 

position 50 bp from the P2 promoter TSS position and the fragment centered on 75 bp 

downstream of the P1 promoter TSS (Figure 2-23).  These data are shown in the bar graph 

in Figure 2-23. At P2 in L1210 cells, where this promoter is active, the ratios of phospho-

Serine 5 and Serine 2 to total RNAPII were 2.0 and .66, respectively.  Similarly, in mouse 

liver, when P1 is active, a ratio of 1.6 and 1.0 were determined for phospho-Serine 5 levels 

and .83 and .5 were calculated for the level of phospho-Serine 2 (Figure 2-23).  The data 

collected at P2 in L1210 cells and P1 in mouse liver were taken as representative of the 

pattern in an initiation complex:  serine 5 phosphorylation per molecule of RNAPII was 
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highest near nt +1, the transcriptional start site, while serine 2 phosphorylation was lower 

and proportional to the level of RNAPII throughout this region.  

 The profiles of RNAPII obtained at the P2 fpgs promoter in mouse liver were very 

interesting. The level of RNAPII phosphorylated at Serine 2 detected at P2 increased 

substantially compared to the amounts observed at P1 in mouse liver in both experiments.  

Accumulation of RNAPII complexes over P2 peaked at the position centered on 50 nt 

downstream of the P2 TSS (Figure 2-23).  Phosphorylated Serine 2 RNAPII relative to the 

total RNAPII increased approximately 3-fold between the P1 promoter and the P2 

promoter regions in liver (Figure 2-23). In contrast, changes in the level of phospho-Serine 

5 between the two promoters were reflected by the changes in total RNAPII levels, 

indicating that the levels of serine 5 phosphorylation were not detectably different between 

P1 and P2 in mouse liver (Figure 2-23). We interpreted these data as direct evidence that 

the RNAPII detected over P2 in liver was a component of an actively transcribing 

elongation complex. 

 In what was initially a very surprising observation, the distribution of RNAPII 

across P2 was also easily detectable in mouse brain (Figure 2-24).  However, this 

observation was in agreement with a human whole-genome tiling study that appeared just 

as we had done these studies that indicated that even inactive promoters are usually 

attempting to load initiation complexes (87)(see Discussion). Interestingly, the RNAPII 

was detected broadly across the P2 promoter in brain, similar to the data presented for the 

P2 promoter in mouse liver (Figure 2-23).  We initially took this to suggest that the pattern 

of RNAPII occupancy observed at P2 in L1210 cells may be characteristic of promoters 
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engaged in high levels of active transcription.  However, the phosphorylation pattern of 

RNAPII across P2 in mouse brain was, however, remarkably similar to that profile 

observered in L1210 cells: RNAPII present across the brain P2 was phosphorylated at 

serine 5 to a higher degree and serine 2 phosphorylation was minimal, indicating that these 

complexes were indeed futile initiation complexes. 

 

Evidence that elongating RNAPII over P2 blocks assembly of transcriptional 

initiation complexes in liver.   

 Transcription from the mouse fpgs P2 promoter has been shown to depend on 

several Sp1 sites (43).  A typical Sp1-driven promoter involves binding of TBP to Sp1 

with subsequent recruitment of other components of the pre-initiation complex (PIC).  We 

assessed the binding of components of the PIC to fpgs P2 in mouse liver, brain, and L1210 

cells.  The general transcription factors selected were Sp1, TBP, TFIIB, and TAFIIp250; 

the residence of these proteins at active promoters have previously been used as a mark of 

pre-initiation complex assembly at the p21 promoter (81).  Since it appeared that the P2 

promoter of the fpgs gene, at least in brain, may be controlled at the level of elongation, we 

also tested for the presence of NELF-A, a subunit of the Nelf complex, that has been 

suggested to play a critical role in RNAPII pausing at the early stages of transcriptional 

elongation in both Drosophilia and human experimental systems (169, 267). As shown in 

Figure 2-25, in L1210 cells and mouse brain, Sp1 and TBP were loaded onto the region of 

DNA immediately upstream of the transcriptional initiation site, as well as did TFIIB, 

TAFIIp250, and the NELF-A protein (Figure 2-25).  These proteins persisted on the P2 
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locus past the point of initiation (+200 nt) (Figure 2-25).  In striking contrast, Sp1 was very 

low at -200 nt in liver, and TBP was not detectable.  TAF250 and NELF-A were also very 

low.  At +200 nt in liver, Sp1, TFIIB, TAFIIp250, and Nelf A, were detected at low levels 

and the TBP was undetectable (Figure 2-25).  Interestingly, high levels of Nelf-A, relative 

to the abundance of the general transcription factors detected at P2, were measured in 

mouse brain (Figure 2-25).  This may suggest a role for Nelf in the silencing of P2 in 

mouse brain (see discussion).  We concluded that the binding of several proteins needed 

for assembly of a successful PIC was being actively restricted at P2 in liver.  This is 

consistent with a promoter interference mechanism whereby the elongating RNAPII 

complexes initiating at P1 were physically occluding the DNA over the P2 region in liver. 

 

DISCUSSION 

 Genome-wide analysis of transcription start sites, in humans and mice, have 

revealed that over 50% of genes contain multiple promoters (37).  Alternate promoter 

usage permits a single genetic locus to generate distinct protein products in response to 

different cellular backgrounds.  How exactly is promoter choice dictated? Describing the 

mechanisms driving promoter selection is of great importance to our understanding of 

basic processes of transcription, but also has the potential to uncover the basis for new 

therapeutic strategies that could selectively target gene activity in one particular tissue-

type.  In our studies, we have used the mouse fpgs gene as a model to address the controls 

coordinating the use of two promoters in a tissue-specific fashion.  
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 The mouse fpgs gene is transcribed from two alternative promoters, one of which 

(P2) drives transcription in normal dividing cells types and in tumors, the other (P1) 

controls transcription predominantly in two differentiated tissues, liver and kidney.  We 

sought to explain how these two promoters are regulated in a virtually black and white 

manner; that is, tissues using P2 never initiate at P1, and tissues that initiate at P1 have a 

very limited, although detectable, usage of P2.   Our analysis leads to the conclusion that 

activity at P1 correlates with the presence or absence of CpG methylation, making fpgs one 

of the few known cases in which methylation inversely correlates with expression in non-

neoplastic tissues at a CpG-sparse promoter.  In contrast, CpG methylation did not play a 

role in tissue-specific initiation from P2.  An analysis of some of the most studied histone 

PTMs showed patterns across the span of this 20 kb gene only partly predictable from 

previous studies.  Over the P2 promoter in mouse brain we detected RNAPII and general 

transcription factors, as well as, histone acetylation and lysine 4 of histone H3 methylation, 

suggesting that in mouse brain, RNAPII complexes were poised for transcriptional 

activation at P2.   However, the real surprise in our results is that RNAPII does not seem to 

have access to P2 for transcriptional initiation in liver when P1 is active, despite open 

chromatin context and lack of CpG methylation in the P2 region.  Hence, mouse fpgs is a 

clear case of transcriptional interference in an endogenous mammalian gene.   The 

studies presented in this chapter have described several different mechanisms of 

transcription at the mouse fpgs gene, their implications and relevance to current literature is 

discussed below.   
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Tissue-specific chromatin state of the mouse fpgs gene  

 By profiling several histone PTMs across the mouse fpgs gene we gained an 

understanding for the chromatin context surrounding the fpgs gene in L1210 cells, mouse 

liver, and mouse brain. The marks of histone H3 and H4 acetlyation and tri-methylation of 

lysine 27 of histone H3 are distinguishing features of euchromatin and hetermochromatin, 

respectively (135).  We were surprised to find detectable levels of histone acetylation 

(Figure 2-12) upstream of the P2 promoter in L1210 cells and mouse brain, since this 

region of the gene, in these tissues, was transcriptionally silent.  Likewise, we expected to 

detect H3K27 tri-methylation across the genomic regions between P1 and P2 in L1210 

cells, and likely across the entire locus in mouse brain.  The levels of H3K27 tri-

methylation detected followed similar patterns across the fpgs gene in all three tissues 

studied; thus, it was unlikely that this region was silenced by heterochromatic formation 

(Figure 2-16). Taken together, these data indicated that the fpgs locus was positioned in 

genomic regions of euchromatin in L1210 cells, mouse liver, and mouse brain independent 

of the transcriptional activity occurring at this locus.   

 Why is the mouse fpgs gene in brain not in a heterochromatic state?  Genome-wide 

maps of histone PTMs in human embryonic stem cells and a few differentiated tissues 

have classified genes based on their “chromatin state” in pluripotent cells (161).  They 

propose that the pattern of several histone PTMs, namely histone H3 lysine 4 and 27 tri-

methylation, found at genes in embryonic stem cells is closely linked to cellular state and 

gene function.  They found that almost all CpG-rich promoters in embryonic stem cells are 

associated with H3K4me3 (161).  Additionally, upon differentiation, most of the CpG-rich 
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promoters retain this histone mark. On the other hand, CpG-poor promoters were typically 

not modified in embryonic stem cells and marks of activation or repression were only 

detected in differentiated states.   

 Interestingly, the two promoters of the mouse fpgs gene represent examples of the 

two classes of promoters identified based on chromatin state; the CpG poor P1 promoter 

was marked with H3K4me3 only in mouse liver, and the P2 CpG island promoter was 

marked with H3K4me3 in all tissues. Since such a large number of genes have been found 

to have multiple promoters, it will be important to investigate how different chromatin 

states at a single genetic locus will impact the overall chromatin context surrounding the 

entire transcriptional unit.   With this in mind, we wondered if the persistent H3K4me3 

mark at P2 in all tissues was sufficient to prevent heterochromatin formation across the 

fpgs gene in mouse brain.  

 

Profiling of mono-methyl lysine 27 of histone H3 across the mouse fpgs gene in L1210 

cells, mouse liver, and mouse brain reveals unexpected patterns from prior literature.   

 A very interesting observation was the presence of H3K27me1 throughout the 

entire coding region of the fpgs gene in all three tissues.  At the time these studies were 

performed, little to no information was known about the presence of H3K27me1 at active 

genes.  Since then, high-resolution genome-wide histone methylation analysis has shown 

H2K27me1, along with H3K9me1, in the coding regions of most active human genes (15).  

It has been proposed based on this global analysis that all mono-methylated forms of 

histone H3 lysines are associated with active transcription (15).   However, we detected 
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abundant levels of mono-methylated H3K27 over fpgs in mouse brain, a tissue where this 

locus is completely silenced (Figure 2-16).   Perhaps mono-methylation of H3K27 is not a 

mark of transcriptional activity, but rather a mark of euchromatin. The distinct patterns of 

observed of the mono-, di-, and tri- methylated forms of histone H3 at lysine 27 highlight 

the complexity of the mechanisms leading to a particular histone methylation pattern.   

How the distinct patterns are generated most likely depends on the nature of the 

surrounding histone PTMs, especially since most HMTs are able to methylate the ε-amino 

lysine at all three positions (225). The number of possible modified states is enormous and 

assessing each mark in the context of the surrounding histone PTMs, DNA methylation 

status, and transcriptional activity appears to be a necessary step in further understanding 

the biological consequences of a given histone PTM, or combinations of histone PTMs.  It 

is highly likely that multiple PTMs in sum constitute a signal for molecular phenomena.  

Initial studies investigating this concept used mass spectrometry to map the combination of 

PTMs on histone H3 in T. thermophila and identified permutations of PTMs associated 

with transcriptional activation and repression (236).   An example illustrating the interplay 

between histone PTMs has been described at active eukaryotic genes; histone H2B 

ubiquitination has been shown to enhance the conversion of di-methyl lysine 4 on focal 

histone H3 to the tri-methylated state (261).  The postulate that specific combinations of 

histone PTMs on surrounding nucleosomes may dictate the methylation state of lysine 27 

of histone H3 has yet to be tested.   
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Is tissue-specific methylation regulating the P1 CpG-sparse promoter? 

 The hypothesis that DNA methylation is involved in controlling tissue-specific 

expression has been tested in both genome-wide studies (227, 256) and in studies focusing 

on a few single genetic loci (75). However, these studies have largely addressed the 

methylation status of CpG islands across different tissues, in spite of the fact that most 

tissue-specific promoters are thought to be CpG-sparse.  Similarly, the processes leading to 

transcriptional silencing at promoter regions via DNA methylation are understood largely 

in the context of aberrantly hypermethylated CpG islands in neoplastic cell lines (121) and 

the ability of these mechanisms to silence CpG-sparse promoters in normal tissues has only 

been tested in a few circumstances (75, 203, 254).  Thus, the potential for epigenetic 

mechanisms to regulate tissue-specific expression in normal tissue remains unclear.  In 

spite of this fact, current thought proposes that CpG-sparse promoters are methylated 

independent of activity state and less frequently rely on epigenetic mechanisms for 

transcriptional activation or repression (164). Our analysis of the DNA methylation across 

the P1 promoter of the mouse fpgs gene in tissues where this promoter is either 

transcriptionally active or silent argues a role for DNA methylation in the tissue-specific 

control of CpG-sparse promoters (Figure 2-9). Support for this concept has recently been 

provided. Bisulfite sequencing of the CpG dinucleotides in human chromosomes 6, 20, and 

22 in several mouse tissues identified a population of differentially methylated CpG-sparse 

promoters (58).  This population of promoters had not previously been detected because 

the limitiations of methods commonly used for genome-wide methylation anaylsis, e.g. 

MeDIP and RLGS, prevent the assessment of methylation at single CpG resolution (227, 
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256).  Our analysis of epigenetic marks over the P1 promoter identified correlations 

between DNA methylation and histone PTMs previously predicted through studies at CpG-

island promoters; i.e., three histone PTMs associated with active genes, H3Ac, H4Ac, and 

H3K4me3, were coincident with hypomethylation of regional CpG dinucleotides across P1 

in mouse liver.   However, we were surprised to find that in tissues where the CpGs of the 

P1 promoter were methylated, regional nucleosomes were not methylated at H3K9, a PTM 

commonly associated with DNA methylation at silenced promoters (Figure 2-15) (74). 

Lysine 9 methylation of H3 is tightly linked to DNA methylation and transcriptional 

repression in some systems, particularly Arabidopsis thaliana and Neurospora (74, 234), 

which has led to the proposal that DNA methylation is targeted to genes that have been 

silenced by other mechanisms.  We took the absence of H3K9 methylation at P1 in the 

presence of DNA methylation to suggest that epigenetic control of the tissue-specific CpG-

sparse P1 promoter may involve unique combinations of epigenetic marks to ensure proper 

patterns of expression.  

 While it is difficult to separate out cause and effect in vivo, studies using 

genetically modified mouse models with altered expression of proteins involved in 

establishing either DNA methylation or histone PTM patterns have tried to address the 

sequence of events controlling the patterns of epigenetic modifications leading to gene 

regulation (137). Recent studies have shown that the depletion of Dnmt1 in mouse 

embryonic fibroblasts resulted in a marked increase of H3K4 methylation and H3 

acetylation (137).  On the other hand, loss of either the histone demethylase, LSD1 (255) 

or the histone H3 lysine 9 methylase, G9a (53), in embryonic stem cells resulted in global 
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changes in DNA methylation patterns.  These data suggest that the sequence of events 

leading to certain combinations of epigenetic marks is not universal. Further insight into 

the role of DNA methylation and histone PTMs in the regulation of gene expression may 

be gained from classifying promoters based on the primary epigenetic process that initiates 

mark the regulation of each individual promoter.   In the absence of the expected repressive 

histone H3K9 modification at the chromatin surrounding the P1 fpgs promoter in tissues 

where this promoter is silent, our results suggest that DNA methylation is the prime 

determinant of tissue-specific chromatin condensation and repression of the P1 promoter. 

We concluded that, in adult dividing tissues of the mouse, the P1 fpgs promoter was locked 

in a transcriptionally inactive configuration by DNA methylation and that transcriptional 

activity at P1 in liver was reinforced by a series of histone PTMs commonly associated 

with transcriptional activity.   

 

Potential mechanisms of regulation of P1 via DNA methylation. 

 We considered the mechanism of the proposed DNA methylation-induced 

transcriptional repression of the P1 promoter.  DNA methyl-CpGs are binding sites for 

MBPs which serve as scaffolds for the recruitment of histone deacetylases (123, 170) and 

for chromatin remodeling complexes associated with transcriptional silencing. MBPs have 

been shown to preferentially bind promoter regions with more densely packed CpG 

dinucleotides, and the potential for this class of proteins to mediate transcriptional 

silencing at CpG sparse promoters needs to be further explored.  Interestingly, in L1210 

cells, where P1 is silent and methylated, low levels of RNAPII were reproducibly detected 
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across the promoter region, supporting the idea that the entire fpgs locus is in a dynamic 

state of euchromatin, where trans factors occasionally have access to DNA binding 

elements.  In this context, the DNA methylation of the P1 promoter may be functioning to 

prevent the transcription factor and RNAPII binding events required to successfully 

assemble pre-initiation complexes at the P1 promoter.  Support for this concept was 

recently furnished in a very important genome-wide study that correlated methylation 

status of promoters with histone PTMs in mouse embryonic stem cells and certain 

differentiated tissues (159).  That study found that the DNA of CpG-sparse promoters were 

unmethylated in embryonic stem cells and regional nucleosomes were marked with H3K4 

methylation but, in more differentiated cells, the methylation status of CpGs in these 

promoters distinguished a transcriptionally active gene from a silenced gene (159).  In 

contrast, CpG island promoters were unmethylated across the different developmental 

stages.  If methyl-CpGs block cis elements from transcription factor binding at P1 of the 

fpgs gene, high levels of tissue-specific transcription factors in the nucleus may relieve this 

occlusion, providing a discrete method of transcriptional activation for certain tissue-

specific promoters. As was suggested by the case of fpgs P1, nucleosomes surrounding 

tissue-specific promoters controlled by DNA methylation may not be methylated at H3K9.  

This may have functional implications for these promoters by preventing highly stable 

repression and maintaining the ability for transcriptional activation to occur when the 

cellular context changes.  Thus, the fpgs P1 promoter may represent a class of tissue-

specific promoters identified by differential DNA methylation patterns and CpG sparsity, 

where histone PTMs associated with transcriptional activation are present because of the 
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presence of RNAPII initiation complexes, rather than being causative of transcriptional 

initiation and histone repressive marks are not used.   

 

Are epigenetic mechanisms silencing P2 in mouse liver and brain? 

 The P2 region was devoid of DNA methylation in all tissues studied whether or not 

this promoter was used to initiate transcription (Figure 2-10).  The histone PTMs near P2 

show distinct patterns in different tissues:  In either a tissue in which P2 was exclusively 

used (L1210 cells) or one in which the entire fpgs locus was silent (brain), there was a 

broad peak of H3Ac and H4Ac centered on the hypersensitivity site at this promoter, but 

there was a much more compact peak of these acetylated nucleosomes over P2 in liver 

(Figure 2-12).  Likewise, a substantial peak of H3K4me3 centers on P2 in L1210 and 

brain, but a distinctly smaller peak was found over this same region in liver.  It appeared 

from these data that the processes involved in regulating the silencing of P2 in mouse liver 

and brain were different (Figure 2-14).  

 

Poised RNAPII at P2 in mouse brain: the role of negative elongation factors 

 In a very important recent paper, genome-wide analysis of human embryonic stem 

cells found that the promoters of most protein-encoding genes were associated with 

nucleosomes containing H3K4me3 and H3Ac and were also bound to RNAPII, while only 

a fraction of these transcriptionally-primed promoters produced mature full-length 

transcripts (87). Additional work in Drosophilia has confirmed this work and begun to 

address the functional significance of and mechanisms establishing the poised RNAPII 
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complexes at these promoters (169).  Prior to these studies, promoters with assembled 

transcriptional complexes poised for activation were thought to be few (19), however it is 

now clear that there is a large number of genes regulated at the early stages of elongation.  

The active histone PTM (H3Ac, H4Ac, and H3K4me3) and the substantial level of 

RNAPII detected over P2 in mouse brain (Figure 2-24) placed this promoter in the class of 

promoters identified by Guenther et. al that are poised for transcriptional activation.  This 

is very surprising in the case of fpgs P2, which will never again be activated in normal 

brain.    

 Current models of transcriptional poising propose that the phosphorylation of 

NELF by P-TEFb displaces NELF bound to the poised RNAPII, allowing TFIIF access to 

RNAPII; this release of NELF facilitates the transition from a stalled state to productive 

elongation (184).  The role of NELF in establishing the poised state of RNAPII genome-

wide has been supported through the use of siRNA strategies in fly systems (169).  Two-

thirds of the poised RNAPII complexes in Drosophilia were relieved when levels of NELF 

were reduced.  In our studies, we probed for NELF at the P2 promoter of the mouse fpgs 

gene in L1210 cells, mouse liver, and brain (Figure 2-25).  Since P2 in mouse brain 

appeared to be bound by stalled RNAPII elongation complexes we thought NELF would 

be detected at P2 in mouse brain, but not in L1210 cells.  Surprisingly, NELF was detected 

at P2 in both L1210 cells and mouse brain.  A similar observation was made at the p21 

promoter in human colorectal carcinoma cells: NELF was detected at the p21 promoter 

when the promoter was bound by RNAPII in a stalled state and remained at the promoter 

upon transactivation of the p21 gene by p53 (81). While the presence of NELF may be an 
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essential component to poised RNAPII complexes, our data suggests that the recruitment 

of NELF to P2 is not a determinant of RNAPII poising at P2 in mouse brain.  We took this 

to suggest that additional components, such as post-translational modifications or binding 

partners of NELF, are involved in the stalling of RNAPII at P2 in mouse brain.  Recent 

genome-wide studies have detected NELF residence at promoters with poised RNAPII 

complexes and at promoters of highly active genes (138), suggesting that the observations 

we made at P2 in L1210 cells and mouse brain are universal.  Interestingly, in Drosophila 

S2 cells NELF depletion up-regulated a number of rapidly responding genes, such as 

Hsp70, but a large proportion of genes previously shown to bind NELF showed a 

decreased level of expression (77).   Both our studies and genome-wide studies suggest 

that the hypothesis that NELF recruitment and displacement coordinates promoter-

proximal pausing is an oversimplification.  It will be important to understand the different 

states of NELF at both active and stalled genes to understand the role of this protein in 

each condition.   

 

Profiles of RNAPII at poised and active genes: insights into mechanisms of stalling  

 The profiles of RNAPII across the P2 promoter in L1210 cells and mouse brain 

were remarkably different.  Molecules of RNAPII were reproducibly detected across the 

entire P2 region in mouse brain, whereas in L1210 cells a sharp peak of RNAPII was 

detected near the P2 TSS (Figure 2-22 and 2-24).  One explanation for this observation is 

that differences in sonication between mouse brain and L1210 cells influenced the pattern 

of RNAPII detected across P2.  However, data from a recent genome-wide study suggests 
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that our observations are not likely due to technical issues (214).   RNAPII occupancy 

mapped across promoters bound by stalled and active molecules throughout the genome in 

CD4+ T cells revealed similar profiles to those determined in our studies: sharp peaks of 

RNAPII occupancy at the TSS defined promoters actively engaged in transcription, and 

inactive promoters were bound by RNAPII across most of the promoter region (214). 

Overall these data suggest that on average the positioning of RNAPII at the promoter of 

active genes appears to be highly regulated, resulting in the observed narrow peak of 

occupancy near the TSS detected at the P2 promoter of the mouse fpgs gene, in L1210 

cells (Fig 2-22), and at active promoters genome-wide.  In contrast, the broad profile of 

RNAPII molecules bound to P2 in mouse brain (Figure 2-24) suggests that recruitment of 

enzymes to the P2 promoter region of the fpgs gene involves fundamentally different 

processes over the stalled vs. the productive chromosomal context.  While it is difficult to 

separate out cause and effect, we expect that if the P2 promoter in mouse brain was 

activated, the pattern of RNAPII residency at P2 would reflect the profile observed in 

L1210 cells.   The mechanisms causing the establishment of the two distinct patterns of 

RNAPII residency at active and stalled genes remains an open question. Interestingly, a 

high-resolution nucleosome-mapping study determined that the positioning of 

nucleosomes across stalled and active promoters were very similar, suggesting that 

nucleosome placement does not dictate the difference in RNAPII binding patterns at 

promoters of stalled and active genes (214).  While the position of nucleosomes may be 

similar, the composition of individual nucleosomes may be drastically different between a 

stalled and active promoter regions.  Conventional histones can be replaced within a 



www.manaraa.com

 

 85 

nucleosome with histone variants that differ in their primary sequence from canonical 

histones that have functional consequences for gene regulation (135).  Two histone 

variants in particular, H2A.Z and H3.3, have been linked with transcriptional regulation.  

Genome-wide studies in yeast and humans have identified H2A.Z enrichment at promoter 

regions upstream and downstream of TSS (15).  Likewise, a role for the histone variant 

H3.3 has been implicated through global analysis in Drosophila, where this variant was 

found localized to the promoter regions of active genes (163).  It will be important to 

determine if nucleosomes surrounding promoter regions of stalled genes have a unique 

composition of histone variants.     

 We conclude that the silencing of P2 in mouse brain and mouse liver represents 

different phenomena.  In brain, P2 and P1 are completely silenced whereas, in liver, 

initiations are blocked by elongation complexes.  Accordingly, low levels of initiation can 

be detected from P2.  The fact that transcriptional poised complexes assemble at P2 in 

brain makes it more likely that the absence of such complexes at P2 in liver is due to an 

active exclusion process. 

 

Transcriptional interference at P2 in mouse liver: mechanism and consequences 

 In mouse liver, there were abundant transcripts from the fpgs gene, almost all 

initiating at the P1 promoter (Table 2-2).  The profiles of histone PTMs commonly 

associated with the 5’ end of active or poised genes (H3Ac, H4Ac, and H3K4me3) were 

detected over P2 in mouse liver, however the levels detected were substantially restricted 

compared to the amount observed at P2 in mouse brain or L1210 cells or at P1 in mouse 



www.manaraa.com

 

 86 

liver.   We took this to suggest that something was limiting the assembly of RNAPII and 

initiation factors at the P2 promoter, in spite of active traverse of transcriptional elongation 

complexes through this region of genomic DNA.   How was this happening?   Literature 

precedent suggested a promoter interference mechanism whereby activity at the P1 

promoter prevents transcriptional initiation at the P2 promoter (83, 155, 188). In higher 

eukaryotes, this method of transcriptional repression has been described in the tandemly 

arranged unr and N-Ras genes, where transcription of the unr gene interferes with 

initiation at the N-Ras promoter, which is spaced only 150 nt downstream of the unr 

termination signal (28).  Similarly, deletion of an embryonic ß-like globin gene, Ey, caused 

the activation of a second ß-like globin gene, ßho, which is located immediately 

downstream of the deleted gene (107).  However, the mouse fpgs gene represents an 

interesting case in which transcriptional interference is used to coordinate use of two 

potentially active promoters, spaced a fairly large distance (10 kb) apart.  Our analysis of 

the P2 promoter in liver indicates that RNAPII elongation complexes are residing over an 

extended length of the fpgs genomic locus, covering the nucleosome-deficient DNase 

hypersensitive region before P2 and continuing downstream, physically limiting initiation 

at P2 (Figure 2-23). In support of this concept, we observed that the residence of several 

key general transcription factors at the P2 promoter in mouse liver was severely limited 

(Figure 2-25).   Such a physical occlusion mechanism has been proposed to involve the 

decreased binding of transcription factors, such as Sp1, or through steric obstruction of 

DNA binding regions required for transcription factor interactions (83, 107, 155).  We 

concluded that the mouse fpgs gene represents an example of this mechanism, one of the 
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few documented for an endogenous gene, and the only example in the literature to date 

demonstrating TI as a means of organizing transcription from a multi promoter gene.  

 

What causes elongating RNAPII to stall at P2 in mouse liver? 

 Substantial levels of RNAPII molecules were detected at both the P1 and P2 

promoters of the mouse fpgs gene in mouse liver. The accumulating complexes over P2 in 

mouse liver appeared to be hyperphosphorylated at serine 2 residues within the CTD of 

RNAPII (Figure 2-25), suggesting that these molecules of enzyme over P2 in mouse liver 

were engaged in elongation.  

 We considered several mechanisms as explanations for the accumulation of 

RNAPII observed at P2 in mouse liver. The presence of specific epigenetic marks and 

chromatin structure may play a role in establishing the profile of RNAPII at P2 in mouse 

liver and my analysis to date has focused on these factors.  This analysis has not given us a 

concrete explanation of the RNAPII stalling. CpG methylation declines to almost 

undetectable levels 500 nt upstream of the P2 TSS, coincident with an increase in histone 

H3 and H4 acetylation and H3K4 tri-methylation in all tissues studied (Figure 2-9).  The 

correlation of RNAPII accumulation with the hypomethylated CpG island in the coding 

region of the fpgs gene in mouse liver suggests that the observed change in DNA 

methylation and histone PTMs may impair the transit of elongating RNAPII across the P2 

promoter region.  Previous work using transgenic mice addressed the influence of 

intragenic DNA methylation on transcriptional elongation efficiency and determined that 

CpG methylation, coincident with loss of histone acetylation and H3K4 methylation, 
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impeded RNAPII processing across the methylated stretch of genomic DNA (146).  Based 

on this evidence it seemed unlikely that loss DNA methylation or histone PTMs associated 

with the P2 promoter region in mouse liver were directly causing the accumulation 

observed.  One potential epigenetic mechanism causing the increased RNAPII levels 

observed is the positioning of nucleosomes across the P2 promoter region in mouse liver.  

The DNAse Hypersensitivity site and Total histone H3 maps presented (Fig 2-10) assess 

gross chromatin structure, but recent high-resolution mapping studies highlight the 

functional significance of fine differences in nucleosome positioning not previously 

appreciated (214). It will be very interesting to determine the position of nucleosomes 

across the P2 region in L1210 cells, mouse liver, and mouse brain.  These studies may find 

that the passage of RNAPII complexes across the P2 region in mouse liver is determined 

by chromatin structure.  

 Currently, we propose that elongating RNAPII complexes accumulate over P2 in 

mouse liver as a result of collisions with transiently bound initiation factors.  The residence 

of general transcription factors and the accumulation of H3K4me3 at P2 in mouse liver, 

albeit at minimal levels, indicate that PICs are occasionally able to assemble at the P2 

promoter in this tissue. We hypothesize that passage of RNAPII molecules across P2 is 

transiently blocked by the presence of initiation factors and the displacement of these 

factors is required for elongating RNAPII molecules to proceed down the rest of the gene 

(Figure 2-26). If this were the case, blocking PIC assembly at P2 in mouse liver should 

prevent the accumulation of RNAPII complexes over this region.  It is interesting to note 

that mouse kidney also uses the P1 promoter to generate fpgs mRNA, but in this tissue the 
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P2 promoter also generates a substantial level of transcripts initiating at P2.  The level of 

fpgs mRNA generated from P1 is higher in liver than in kidney, and we consider that the 

lower amount of initiation occurring at P1 in kidney may account for the higher level of P2 

expression detected in mouse kidney.  It will be interesting to explore the residence of 

RNAPII and histone PTMs across P2 in kidney and may provide further insight in to the 

mechanism of TI at the fpgs locus.  

 

Are there consequences to the stalling of RNAPII at P2 in mouse liver? 

 The mouse fpgs gene generates two splice variants in a tissue-specific pattern from 

two different promoters (244).  In dividing cells, such as L1210, transcription initiates at 

the P2 promoter and the mature mRNA includes exons 1-15 (Fig 2-3).  In contrast, in 

mouse liver, a tissue where the P1 promoter is active, the 5’ exons A1a and A1b are 

directly linked to exons 2-15, splicing out exon 1 (Fig 2-2). The distance between exons 

A1b and 2 is remarkably long and how the splicing machinery handles 10 kb of pre-mRNA 

in order to achieve the correct splicing pattern of exon A1b to exon 2 remains unclear.   

The generation of alternative splice variants is dependent upon the availability of splicing 

factors, splicing machinery, and regulatory sequences within the immature mRNA.  

However, work over the past ten years has shown that the rate of transcriptional elongation 

also directly impacts alternative splicing patterns (187).  This concept was first addressed 

in experiments designed to test the hypothesis that mRNA processing occurred 

simultaneously with transcription.  Proudfoot et al. altered the splicing pattern of the α-

tropomyosin gene by artificially positioning RNAPII pause sites within the gene, thus 
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delaying the transcription of a splicing inhibitory element and causing the inclusion of an 

alternative exon in the mature mRNA (187).  Additional studies used a mutant form of 

RNAPII, with a slower elongation rate, to show that the inclusion of alternate exons is 

enhanced when transcription is accomplished with the mutant form of RNAPII (51).  We 

are very interested to address the postulate that the accumulation of RNAPII at the P2 

promoter in mouse liver represents a stalled complex, which dictates the splicing pattern of 

fpgs mRNA detected in this tissue. The potential of alterations in the rate of RNAPII 

transit across the body of a gene to generate multiple splice variants from a single gene is a 

tremendously interesting concept, and the mouse fpgs gene may be an excellent model 

system to determine the sequence of events involved in this affect.   

 

Two classes of promoters distinguished by methylation genome-wide? 

 Recent studies have examined RNAPII occupancy, H3Ac, and H3K4me3 at 

promoter regions in several differentiated mouse tissues.  That study expanded on the 

previous observations made in genome-wide studies by classifying promoters based on 

their CpG status and describing patterns across several mouse tissues. In doing so, it 

became clear that CpG islands are most often bound by RNAPII and regional histones are 

acetylated and methylated at lysine 4 of histone H3 in a tissue-independent fashion (13). In 

contrast, CpG-sparse promoters were bound by RNAPII in a tissue-specific pattern and 

presumably in tissues only when they are expressed. The fpgs gene has one of each type of 

promoter identified in the abovementioned study (13). The difference between these two is 

that P1 appears to be controlled by DNA methylation, and P2 is not.  It will be of 
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tremendously interesting to determine if DNA methylation is a distinguishing 

characteristic between the poised promoters and the tissue-specific promoters identified in 

the differentiated tissues of the mouse.   

 Overall, we conclude that the mouse fpgs gene uses at least two mechanisms, 

epigenetic marking of the P1 promoter and transcriptional interference at the P2 promoter, 

to ensure that each of two isoforms of FPGS are expressed as needed in dividing and select 

differentiated tissues.   
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YSPTSPS RNAPII CTD 
repeat peptide - 
phospho S5 

YSPTSPS RNAPII CTD 
repeat peptide - 
phospho S2  

YSPTSPS RNAPII CTD 
repeat peptide  

Peptide 
sequence 

Peptide name 

PO4 

PO4 

Table 2-1.  Sequences of the C-terminal domain heptad repeat of RNAPII peptides 
used to test the specificity of the serines 2 and serines 5 phospho-specific 
antibodies.  The position of the phosphate group in each synthetic peptide is illustrated.   
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 P1  
(pg FPGS mRNA + SD) 

P2  
(pg FPGS mRNA + SD) 

L1210 <0.0001 0.15 + 0.014 
Liver 0.21 + 0.0054 0.001 + 0.0001 
Brain <0.0001 <0.0001 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2-2.  Quantitative RT-PCR determination of FPGS expression from P1 and 
P2 in mouse L1210, liver and brain. Total RNA (5µg) was reverse transcribed using 
Superscript III in a total volume of 20µl, and 1µl was used in real time pCR assays using 
primers specific for exons A1a/A1b to exon 3 (P1) or exon 1 to exon 3 (P2).  Standard 
curves for quantitation were constructed using plasmids carrying cDNAs corresponding 
to the products of transcription from P1 (exons  A1a through 3) and P2 (exons 1 through 
3) , respectively. 
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Figure 2-1. Northern analysis of FPGS gene expression in normal human 
and murine tissues.  Total RNA (10 µg) from murine normal tissues from 
female DBA/2 mice was probed with a 1.7-kb downstream murine FPGS cDNA. 
Freemantle, S. J. et al. J. Biol. Chem. 1997;272:25373-25379. 
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Figure 2-2.  Schematic diagram of the tissue-specific expression patterns of the 
two promoters of the mouse fpgs gene.  The two promoters of the fpgs gene are 
splaced 9.5 kb apart and are differentially activated; the P1 promoter is used 
exclusively in mouse liver and kidney and generates transcripts with exons A1a and 
A1b linked directly to exons 2-15, splicing out exon 1; the P2 promoter is used in all 
normal and neoplastic dividing cells and mature fpgs mRNA generated from P2 
includes exon 1-15.   The ovals at P2 mark the location of the three Sp1 sites 
regulating the P2 promoter.     
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Figure 2-3. Tissue-specific use of P1 and P2 of the mouse fpgs 
gene.  A. Schematic diagram of riboprobes, the PCR-generated RNA 
standards, and the expected protected fragment size. B. RPA using 
both probes on neoplastic and normal mouse tissues. Blue and red 
circles identify the fragments generated using mouse liver and L1210 
cells, respectively. Adapted from Turner et. al, Cancer Research, 
59. 6074-6079, 1999. 

P1 probe P2 probe 
A.  

B.  
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Figure 2-4.  Stages of RNAPII-mediated transcription and promoter proximal 
pausing.  (a) The phases of transcription: initiation, elongation, and termination.  A 
pre-initiation complex is assembled with general transcription factors (GTFs) and 
RNAPII at the promoter region. Transcriptional elongation is marked by an the 
phosphorylation of the CTD of RNAPII. At the 3’ end a termination signal is reaced 
and the mRNA molecule and RNAPII are released.  (b) Steps of promoter-proximal 
pausing. In recent years, it has become apparent that a larger proportion of mammalian 
genes have a phase of promoter-proximal pausing during their transcription cycle. 
Adapted from Koch and Jourquin, Cell press, 2008.  
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Figure 2-5.   DNA wrapped around nucleosomes, histone tails, and 
histone tail post-translational modifications (PTMs).  A.  Nucleosomes 
(yellow cylinders) and DNA (red strands) interact to assemble chromatin.  
B. Two histone subunits of H2AB, H2B, H3, and H4 assemble into an 
octamer to form the basic unit of chromatin, the nucleosome.  The N-
terminal tail of each histone protrudes from the core of the nucleosome and 
key residues (black circles) serves as a substrate for histone modifying 
enzymes.  C.  A portion of the histone H3 tail with some of the potential 
PTMs.  The potential modifications include: acetylation (Ac, green flag), 
mono-, di-, or tri- methylation (Me, octagon), phosphorylation (P, yellow 
circle) 
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Figure 2-6. Composite profiles of the histone post-translational modifications 
(PTMs) studied across the mouse fpgs locus in L1210 cells, mouse liver, and 
mouse brain.  The patterns are presented across a model gene and the correlation 
with active or repressed transcription rates is denoted by the + and – symbols.  The 
presented profiles were obtained from genome-wide studies mainly in yeast, but 
H3K9 and H3K27 patterns were described in higher eukaryotes Adapted from Li 
and Workman, 2007 Cell.  
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Figure 2-7.  Mechanisms of DNA methylation-mediated repression. A.  DNA 
methylation occludes cis elements from transcription factor binding. B.  Methyl-binding 
proteins (MBPs) recognize methylated DNA and recruit histone deacetylases (HDACs) 
and histone H3 K9 methyltransferases. Adapted from Klose, Genomic Marks and 
Mediators 2006. 
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Figure 2-8. 1% agarose gel with sonicated material obtained for the 
ChIP studies presented in this chapter using L1210 cells, mouse liver, 
and mouse brain.  Three hundered microliters of lysates were sonicated 
for 25 min (mouse liver and brain) and 20 min (L1210 cells).  A 20 µl 
aliquot of sonicated material was incubated at 650C overnight followed 
by DNA purification and visualized on a 1% agarose gel stained with 
ethidium bromide.  DNA fragments ranged from 100-300 bp on average.  
 

300 bp 
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Figure 2-9.  CpG methylation in the regions of the mouse fpgs promoters 
in various tissues.  CpG methylation in the P1 promoter region correlates with 
transcriptional activity; the P2 promoter region is unmethylated regardless of 
activation.  Genomic DNA was treated with 5M sodium bisulfite, amplified by 
PCR, cloned, and the sequences of 10 clones were determined for each region.  
At the position of each CpG dinucleotide in the genomic sequence, the 
percentage of clones containing a methylated cytosine is represented in the 
graph, plotted relative to the positions of exons A1a, A1b and 1 (filled boxes).   
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Figure 2-10. Chromatin density over the mouse fpgs locus.  A.  A 
prominent DNase I hypersensitivity site is present in the P1 region only in 
tissues in which the promoter is active; the P2 region is accessible to 
DNase I in expressing and non-expressing tissues.  Nuclei were incubated 
with increasing concentrations of DNase I for 5 minutes at 25°C.  Genomic 
DNA was extracted, digested with HinDIII, and run on an agarose gel.  Blots 
were probed with PCR-generated sequence at the 5’ ends of the HinDIII 
fragments (asterisks in lower diagram).  The bands in the control lanes indicate 
the gel-mobility of the full-length HinDIII fragments.  The location of the 
DNase I hypersensitive sites (HSs) and the tissues containing such sites are 
indicated in the lower diagram.   B.  ChIP determination of the level of 
histone H3 over the fpgs gene.  Chromatin from mouse liver (triangles), brain 
(squares), or L1210 leukemia cells (circles) was cross-linked, sonicated, and 
immunoprecipitated with either a pan-H3 antibody (filled symbols) or a non-
specific IgG (open symbols).  The content of DNA for various segments of the 
fpgs locus was determined by real-time PCR using primers spaced 250-300 nt 
apart; symbols are placed at the middle of each PCR fragment. Input represents 
amplified product from 0.1% of the starting material. The positions of the two 
transcriptional start sites are shown as the cross-hatched bars. The experiments 
in this and all subsequent ChIP figures were performed at least twice, and the 
data are from a representative experiment. 
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Figure 2-11.  Schematic representation of amplified regions across the 
20 kb of the mouse fpgs gene.  The fpgs gene was divided into twelve 
fragments separated 1.5-2.0 kb apart.  Each amplicon ranged between 150-
300 bp in size.   
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Figure 2-12.  Distribution of acetylated histone H3 and H4 along 
the fpgs locus in mouse tissues expressing transcript from P1 or P2.  
Chromatin from L1210 leukemia cells (A), mouse liver (B) and mouse 
brain (C) was cross-linked, sonicated, and immunoprecipitated with 
either an antibody against acetyl-H3 (circles), acetyl-H4 (squares), or a 
non-specific IgG (open symbols).  The content of DNA for various 
segments of the fpgs locus was determined by real-time PCR as in 
Figure 2B. The positions of the two transcriptional start sites are shown 
as the cross-hatched bars.  
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Figure 2-13.  Analysis of the di-methyl histone H3 lysine 
modifications decorating the two fpgs promoter regions in 
mouse liver (B) and L1210 cells (A).  ChIP analysis was 
performed using antibody raised against H3K4me2.  Quantitation 
was performed using real-time PCR.   Immunoprecipitation was 
also performed with an IgG antibody (X), as a non-specific control.    
The cross-hatched vertical bars represent the location of the P1 and 
P2 transcriptional start sites.   
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Figure 2-14.  Distribution of histone H3 methylated at lysines 4 along 
the fpgs locus in mouse tissues expressing transcript from P1 (liver), P2 
(L1210) or from neither promoter (brain). Chromatin from L1210 cells 
(A), mouse liver (B) and mouse brain (C) was cross-linked, sonicated, and 
immunoprecipitated with either an antibody against H3K4me3. For each 
immunoprecipitation, a separate non-specific IgG control was used (open 
symbols).  The positions of the two transcriptional start sites are shown as 
the cross-hatched bars.  
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Figure  2-15.  Analysis of the histone H3 K9 modifications decorating the two fpgs 
promoter regions in mouse liver (filled triangles) and L1210 cells (filled circles).  
The acetylation or tri-methylation of histone H3 K9 reflects the chromatin 
configuration and transcriptional activity of the P1 promoter. ChIP analysis was 
performed using antibody raised against H3K9me3.  Quantitation was performed 
using real-time PCR.   Immunoprecipitation was also performed with an IgG antibody 
(X), as a non-specific control.    The cross-hatched vertical bars represent the location 
of the P1 and P2 transcriptional start sites.   
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Figure 2-16.  Distribution of histone H3 methylated at lysine 27 along the fpgs 
locus in mouse tissues expressing transcript from P1 (liver), P2 (L1210) or from 
neither promoter (brain). Chromatin from L1210 cells (A), mouse liver (B) and 
mouse brain (C) was cross-linked, sonicated, and immunoprecipitated with either an 
antibody H3K27me1, H3K27me2, or H3K27me3.  For each immunoprecipitation, a 
separate non-specific IgG control was used (open symbols).  The content of DNA 
for various segments of the fpgs locus was determined by real-time PCR.  The 
positions of the two transcriptional start sites are shown as the cross-hatched bars.  
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Figure 2-17.  Distribution of histone H3 methylated at lysine 36 along 
the fpgs locus in mouse tissues.  A. Chromatin from mouse liver 
(triangles), mouse brain (squares), and mouse L1210 leukemia cells 
(circles) was cross-linked, sonicated, and immunoprecipitated with either 
an antibody against H3K36me3 or IgG (open symbols).  The content of 
DNA for various segments of the fpgs locus was determined by real-time 
PCR as in Figure 2B.  The positions of the two transcriptional start sites 
are shown as the cross-hatched bars.  B. The ratio of ChIP signal for 
H3K36me3 to that for total histone H3.  The amount of H3K36me3 is 
expressed as a ratio of the ChIP signal for total histone H3 to determine 
whether the minimum in the H3K36me3 signal seen in A reflects total 
H3 density or a lack of methylation at H3K36 on the regional 
nucleosomes.  
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Figure 2-18.  Schematic representation of overlapping primer sets used to 
amplify the P1 and P2 promoter in high-resolution ChIP experiments.  The P1 
promoter was divided in to six fragments covering the region between -630 and 
+315 nt, relative to the P1 promoter transcriptional start site.  The P2 promoter was 
probed using six amplicons against the region between -701 and +240 nt, relative to 
the P2 promoter transcriptional start site.  Adjacent products overlapped by ca 50 nt.  
The location of the DNase HS determined previously are labeled HS.   
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Figure 2-19.  Semi-quantitative PCR identifies RNAPII across the P1 and 
P2 promoter regions in mouse liver and only at the P2 promoter in L1210 
cells.  High-resolution ChIP walking studies were performed using an antibody 
against RNAPII and IgG as a non-specific control. Six regions of genomic DNA, 
labeled 1-6, were amplified for both the P1 and P2 promoters.  The location of 
each amplicon is illustrated in Fig. 2-18.  0.1% of total input DNA was added to 
PCR reactions using each primer pair.  A portion of the β-globin promoter was 
amplified as a negative control for RNAPII binding.  The reactions were run for 
28 PCR cycles and 10 µl of product were run on a 1% agarose gel stained with 
ethidium bromide.  
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Figure 2-20.  Residency of RNAPII over fragments of the two mouse fpgs 
promoters in mouse liver and L1210 cells.  A.  The amount DNA from regions 
spaced along the fpgs gene immunoprecipitated by an antibody to RNAPII was 
quantitated by real-time PCR as in Figure 2B.   The position of P1 is plotted at 0 kb 
and P2 is at 10 kb on the abscissa.  Data for L1210 cells is shown as black bars, for 
liver as grey bars. In B, the DNA regions immediately surrounding P1 (left panel) and 
P2 (right panel) were fine-mapped by ChIP using the same antibody. Non-specific 
binding was determined by immunoprecipitation with IgG, as shown by open triangles 
(liver) and circles (L1210).   The primer set plotted at 0 in A is also plotted at 0 for the 
P1 blow-up in B.  The primer set plotted at 10 kb in A is plotted at 0 for the P2 blow 
up in B.  Data are plotted in B at the midpoint of each amplified region.  
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Figure 2-21.  Phosphopeptides used to raise phosphospecific antibodies 
against the CTD of RNAPIII specifically block the ChIP signal under our 
conditions.  Increasing concentrations of the phosphopeptides used to raise 
antibodies against RNAPII CTD phosphorylated serine 2 and RNAPII CTD 
phosphorylated serine 5 or the equivalent unphosphorylated peptide were 
incubated for 2 hours with antibodies prior to their use in ChIPs as described in 
the Materials and Methods.  Subsequently, the antibodies were added to lysates 
of L1210 cells, and the DNA in precipitates was quantitated by real-time PCR 
using a set of primers directed against a region of the GAPDH promoter and 
against a region of the P2 promoter of L1210 cells, regions chosen for moderate 
signals against the phosphoserine 5 and phosphoserine 2 antibodies, respectively.   
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Figure 2-22.  Phosphorylation of RNAPII at serine 2 and 5 detected over 
fragments of the P1 and P2 fpgs promoters L1210 cells. ChIP walking studies 
were performed using an antibody against RNAPII (filled circles), antibodies raised 
against the C-terminal domain heptad (YSPTSPS) repeat of RNAPII phosphorylated 
at serine 2 (inverted triangles) and serine 5 (open circles), as well as an antibody 
raised against IgG (open triangles) as a nonspecific control.  Five or six fragments 
were amplified over the P1 and P2 fpgs promoters, respectively.  Quantitation was 
performed using real-time PCR. The data points were plotted at the midpoint of each 
amplified region.  
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Figure 2-23.  Phosphorylation of RNAPII at serine 2 and 5 detected over 
fragments of the P1 and P2 fpgs promoters in mouse liver. ChIP walking studies 
were performed using an antibody against RNAPII (filled circles), antibodies raised 
against the C-terminal domain heptad (YSPTSPS) repeat of RNAPII phosphorylated 
at serine 2 (inverted triangles) and serine 5 (open circles), as well as an antibody 
raised against IgG (open triangles) as a nonspecific control.  Five or six fragments 
were amplified over the P1 and P2 fpgs promoters, respectively.  Quantitation was 
performed using real-time PCR. The data points were plotted at the midpoint of each 
amplified region. The data from two separate experiments are presented in A and B. 
Ratios of enrichment signal of phospho-specific antibodies to total RNAPII signal 
were calculated for points at +75 nt and +50 nt for P1 and P2, respectively (C and 
D).   
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Figure 2-24.  Phosphorylation of RNAPII at serine 2 and 5 detected over 
fragments of the P2 fpgs promoter in mouse brain.   ChIP walking studies 
were performed using an antibody against RNAPII (filled squares), antibodies 
raised against the C-terminal domain heptad (YSPTSPS) repeat of RNAPII 
phosphorylated at serine 2 (filled circles) and serine 5 (open circles), as well as 
an antibody raised against IgG (X) as a nonspecific control.  Quantitation was 
performed using real-time PCR.  The data points were plotted at the midpoint 
of each amplified region.  
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Figure 2-25.  Presence of transcription factors over the mouse fpgs P2 
promoter in L1210, liver and brain.  ChIP analysis was performed using 
antibodies directed against the sequence-specific transcription factor Sp1, 
and general transcription factors TFIIB, TBP, TAF p250, and the NELF-A 
protein.  Quantitation was performed by real time PCR using primers 
amplifying regions at -200 nt (A) and +200 nt (B) positions relative to the P2 
transcriptional start site. 
 



www.manaraa.com

 

 125 

Figure  2-26.  Schematic diagram of proposed mechanism of transcriptional 
interference occurring at the P2 promoter in mouse liver.   In dividing cells, 
the initiation occurs at the P2 promoter and generates abundant fpgs transcript 
(Top).  In mouse liver, transcriptional initiation occurs at the P1 promoter and 
elongation RNAPII complexes travel down the fpgs locus.  We propose that 
RNAPII elongation complexes restricts assembly of a pre-initiation complex at 
the P2 promoter, thus preventing robust transcription from the P2 promoter in 
mouse liver.   
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 Chapter 3: Disruption of individual steps in the control mechanisms of the 
mouse fpgs gene 

 
 
 
INTRODUCTION 

 The studies presented in the previous chapter questioned how the two promoters of 

the mouse fpgs gene are regulated in a tissue-specific manner.   Our data suggests that 

epigenetic mechanisms and transcriptional interference are involved in the control of the 

two mouse fpgs promoters.   

 A major challenge in further investigating these regulatory mechanisms is that the 

experiments needed require model systems where a primary change, i.e. loss of DNA 

methylation or loss of P1 activity, is established and the consequences on gene expression 

and epigenetic modifications at the mouse fpgs gene are measurable.  As our initial studies 

were completed, two model systems became available that had single disturbances in the 

processes we were aiming to test: 1.) a knock-out mouse where the P1 promoter is 

completely removed was generated in our laboratory(263); and 2.) Cedar et. al engineered 

a mouse embryonic fibroblast immortal cell line that is severely depleted in DNA 

methylation (137).   
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Transcriptional Interference studies 

 In mouse liver, the upstream fpgs P1 promoter is active and the downstream P2 

promoter is silenced.  In previous studies, tracking the residence of RNAPII and general 

transcription factors across P2 in liver argued that the accumulation of elongation 

complexes restricted the assembly of pre-initiation complexes at this promoter.  We took 

this to suggest that a mechanism of transcriptional interference at the mouse fpgs gene was 

involved in dictating the production of one isoform over a second in a tissue-specific 

fashion.  

 Transcriptional interference is a very broad term that includes any mechanism 

where the transcriptional activity of one gene impacts the activity at a second gene.  TI 

mechanisms have been most extensively studied through engineered in vitro systems (1, 

83, 188).  Evidence from genome-wide studies supports the idea that TI may alter the 

expression of more genes than previously thought.  Intergenic distances between genes 

have been mapped on human chromosomes 6, 20, and 22 and in many cases were found to 

be small, resulting in circumstances where regulatory regions frequently overlapped(233).  

Likewise, over 50% of mammalian genes have recently been identified to use multiple 

promoters(37).  Whether and how TI is coordinating expression of either adjacent or multi-

promoter mammalian genes are important questions that will require analysis on a case-by-

case basis.  

 TI has been best illustrated in vivo at the SRG1-SER3 locus in S. cerevisiae.  The 

intergenic transcription of the SRG1 gene represses the transcription of the adjacent SER3 

gene through direct TI (155).  Transcriptional repression of the SER3 gene was relieved in 
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SRG1 mutants or in mutants where a transcription termination signal was placed between 

the two genes (155).  The TI mechanism was found to be promoter occlusion from studies 

showing that SRG1 activity severely limited transcription factor binding to the SER3 

promoter (155). Additional studies related this effect to amino-acid metabolism when it 

was found that SRG1 expression was induced by high serine levels, which lead to the 

silencing of SER3, a serine biosynthetic gene (156).  This was one of the first examples 

described in vivo where direct TI, or promoter occlusion, was proven to coordinate 

eukaryotic gene expression.    

 In our studies, we have used the mouse fpgs gene to study mechanisms of TI at an 

mammalian promoter in vivo.   Lin-Ying Xie, a former student in the laboratory, generated 

a knock-out mouse line, where the P1 promoter and the two upstream exons A1a and A1b 

were deleted through homologous recombination (263).  Homozygous deletion mice 

survived embryonic development, matured to adulthood, and reproduced normally (263).  

Our studies on the phenotype of these mice are not yet complete but, to date, the mice 

appear to be biologically normal.  

 In an effort to test our TI hypothesis, the address presented in this chapter 

compared expression levels and transcription factor binding at the P2 promoter in mouse 

liver harvested from wild-type and knock-out animals. We also used this mouse model to 

assess changes in the patterns of histone acetylation and histone H3 lysine 4 methylation 

across the mouse fpgs gene in the livers of genetically different mice. The P1 knock-out 

mouse model is a unique reagent allowing us to approach the mechanism of TI at an 
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endogenous locus by deletion of the proposed interfering gene; such studies have only 

previously been done in yeast models. 

 

DNA methylation studies 

 DNA methylation analysis of the two mouse fpgs promoters showed that the CpG-

sparse P1 promoter is differentially methylated between tissues, suggesting a role for DNA 

methylation in the regulation of the P1 promoter.  Likewise, loss of DNA methylation was 

coincident with histone acetlyation and transcriptional initiation.  These observations were 

truly a surprise since at the time we were unaware of any example described where loss of 

DNA methylation predicted the transcriptional activation of a tissue-specific CpG-sparse 

promoter.   We were very interested to explore the possibility that DNA methylation was a 

primary determinant of transcriptional regulation at the P1 promoter.   

 Genome-wide studies have identified tissue-specific differentially methylated 

regions in both mouse and human (58, 227, 256).  However, the primacy of DNA 

methylation in the regulation of tissue-specific transcriptional control remains 

controversial.  The notion that CpG methylation may coordinate tissue-specific expression 

has been proposed for the past two decades (40, 235), but little evidence has supported this 

model (22, 206, 254).  The methylation-mediated transcriptional repression of CpG-island 

promoters during the process of transformation has been well described (120, 131)but, 

tissue-specific promoters are now known to often be CpG-sparse and the ability for DNA 

methylation and methyl-binding proteins to promote silencing of this class of genes is 

poorly understood.  Alterations of DNA methylation that parallel changes in expression at 
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tissue-specific and developmentally coordinated genes with non-CpG island promoters 

have been described in a few instances (75, 106, 112, 150). The maspin gene was one of 

the first cases identified in vivo where tissue-specific loss of DNA methylation resulted in 

production of mRNA.  A case for the importance of this epigenetic mechanism in 

hematopoietic development has recently been made in several important studies at the 

mammalian globin locus.  In this work, investigators tracked methylation and gene 

expression patterns in mice during development, which has lead to the proposal that DNA 

methylation and methyl-binding proteins may be involved in gene switching at this locus 

(106, 203).    

 Central to the interpretation of tissue-specific patterns of methylation is an 

understanding of how these genomic regions of differential methylation originate in 

developed tissues.  The distribution of methyl groups at CpGs throughout the genome 

occurs at implantation with a phase of de novo methylation and is maintained throughout 

normal development and differentiation (193, 206).  As such, loss of DNA methylation at a 

tissue-specific promoter must require a process of selective DNA demethylation.  Whether 

loss of DNA methylation is a passive event, requiring multiple rounds of DNA replication, 

or an active process is a topic of controversy. However, there are an increasing number of 

examples found in the literature where rapid and cyclical changes in DNA methylation 

have been observed in mammalian cells in response to extracellular stimuli (126), leading 

to the proposal that this gene was regulated by an active process demethylation (32).  

Recent work illustrated an association between nucleotide-excision repair (NER) processes 

and genome-wide DNA demethylation (14, 213).  However, the universality of NER 
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mechanisms in shaping the tissue-specific patterns of demethylation observed in mammals 

remains to be understood.   Likewise, there is still a great deal to learn about how the 

timing and specifity of demethylation events are dictated, and whether or not DNA 

demethylation is a primary event in transcriptional activation.  Our studies at the P1 

promoter focus on the sequence of events leading to transcriptional activation, histone 

marks, and loss of DNA methylation at this region.  

 Methylation is the only known covalent modification of DNA in mammals and is 

catalyzed by a family of enzymes collectively known as the DNA methyltransferases 

(DNMTs) (131).  These enzymes are classified based on a highly conserved catalytic 

domain at the C-terminus and the N-terminal domains of these proteins tend to be highly 

variable (131). To date, the identified mammalian DNMTs include: DNMT1, DNMT2, 

DNMT3a, and DNMT3b (131).  Studies have determined that DNMT2 is not required for 

establishing or maintaining methylation patterns but instead, DNMT2 is a tRNA 

methyltransferase (80, 179). DNMT1 was the first enzyme purified in this family and was 

found to have activity towards nonmethylated and hemi-methylated DNA, with a 

preference towards a hemi-methylated substrate (21).  Genetic deletion of the DNMT1 

gene in developing mice leads to genome-wide loss of CpG methylation and embryonic 

lethality at E9.5 (142). Embryonic stem cells with DNMT1 mutant alleles retained 

detectable levels of DNA methylation, which lead to the proposal that additional 

methyltransferases were responsible for methylation in early stages of development (242). 

Subsequently, DNMT3a and 3b were cloned and characterized as the enzymes required for 

de novo methylation during development (177, 178).  DNMT3L is a member of the de 
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novo methyltransferase family of proteins, which does not have any catalytic activity that 

cooperates with 3a and 3b to establish de novo methylation patterns (108).  Current thought 

proposes that DNMT3a and 3b establish methylation patterns during development and 

DNMT1 uses a hemi-methylated substrate to maintain methylation in developed tissues 

(22, 131).  How coordination of these enzymes affects tissue-specific patterns of 

methylation is not well understood.    

 A major challenge in the field of DNA methylation has been developing model 

systems to test the consequence of global loss of DNA methylation.  It has been impossible 

to generate cell lines either from embryos of knock-out mouse models or in human 

carcinoma cells lines that are truly deficient in DNMT1.  Previous literature predicts that if 

DNMT1 null cells survive in culture, they are not completely deficient in DNMT1, but 

instead are DNMT1 hypomorphs (44, 60).  Additionally, in cells where the catalytic 

domain of DNMT1 has been conditionally deleted human carcinoma cells undergo mitotic 

catastrophe and substantial cell death within two days (44).  While these issues highlight 

the importance of DNMT1 and DNA methylation for cellular survival, they have made it 

very difficult to ask fundamental questions regarding the consequences of primary changes 

in DNA methylation at specific CpGs.   

 An alternative approach to DNMT1 knockdown or knock-out animals or cell lines 

has been the use of nucleoside DNMT1 inhibitors 5-azacytidine (5aza) and 5aza-2-

deoxycytidine (5daza) to pharmacologically induce loss of genome-wide patterns of DNA 

methylation (122).  These compounds are cytidine analoges that are incorporated into 

DNA during replication.  Binding of these analogues, once incorporated into DNA, to the 
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catalytic site of DNMT1 is covalent and pseudo-irreversible and traps the enzyme on the 

DNA, leading to depletion of cellular levels of DNMT1.  As a result, these agents have 

been shown to cause demethylation and reactivation of many genes (60).  While treatment 

with 5aza and 5daza has proven very useful, they have been shown to induce a DNA 

damage response, which leads to the expression of p53, p21, and numerous downstream 

targets (180).  Distinguishing transcriptional effects caused by DNA damage vs. those 

resulting from a primary loss of methyl-CpGs is complicated by the fact that so many 

genes become activated during the DNA damage response.  

 In order to circumvent the problems generated by DNMT1 hypomorphs and 

inhibitors discussed above, Howard Cedar’s group generated a fibroblast cell line that is 

homozygous for the DNMT1 mutant allele used in the original knock-out studies (142), 

and homozygous for a p53 mutant allele, resulting in a p53-/-Dnmt1-/- genetic background. 

p53-/-Dnmt1-/+  animals were mated and the resulting embryos were harvested at E9.5, 

when the p53-/-Dnmt1-/- embryos were identified by genotyping (137).  In their report, they 

assayed global DNA methylation in these cells using nearest neighbor analysis and 

proposed that almost all CpG sites were unmethylated (137).  This system was unique 

because the hypomethylated cells remained viable and proliferative in culture due to the 

loss of p53.  Hence, these cells would support studies examining the primary effects of loss 

of DNA methylation on gene expression and chromatin structure, which had not previously 

been feasible. Likewise, a control cell line was easily available by generating mouse 

embryonic fibroblasts from p53-/- mice.   With a primary change in DNA methyation, 

Cedar’s group analyzed changes in histone acetylation and histone H3 lysine 4 
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methylation, as well as changes in gene expression.  In these studies, they identified two 

classes of genes: those genes where loss of DNA methylation was coincident with an 

increase in gene expression, histone acetylation, and histone H3 lysine 4 methylation, and 

the second group of genes that required loss of DNA methylation and inhibition of histone 

deacteylation to show an increase in transcriptional activity.  Some of the studies discussed 

in this chapter took advantage of this cell line to ask questions regarding the role of DNA 

methylation in the regulation of the P1 mouse fpgs promoter.   

 

Objectives of study 

  Our previous work left us with a large number of unanswered questions regarding 

the histone PTMs, DNA methylation, and transcriptional interference involved in the 

tissue-specific regulation of the mouse fpgs gene.  These questions include: 1. Is 

transcriptional interference the primary mechanism silencing P2 in mouse liver? 2. Is 

promoter occlusion the mechanism of transcriptional interference occurring at P2 in mouse 

liver? 3.  Is DNA methylation necessary and sufficient for the silencing of P1 in dividing 

cells? and 4.  Is DNA methylation across P1 necessary and sufficient to prevent histone 

acetylation and histone H3 lysine 4 methylation at nucleosomes surrounding P1 in dividing 

cell?  The answers to these questions could not be pursued through observations of the 

wild-type mouse.  In the studies presented in this chapter we used two model systems with 

primary disturbances in P1 activity and DNA methylation to explore the contribution of 

these factors in the use of the two mouse fpgs promoters.   
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MATERIALS AND METHODS 
 

Materials  

 C57BL/6 mice were used in all the mouse studies and were originally obtained 

from Charles River Laboratories.  P1 knock-out mice were back-crossed with wild-type 

C57BL/6 mice for six generations before they were used in the studies (263). Chemicals 

and reagents were purchased from Sigma (St. Louis, MO) and Fischer (Pittsburgh, PA).  

Antibodies were obtained from Upstate Biotechnology (Billerica, MA), Santa Cruz (Santa 

Cruz, CA), Abcam (Cambridge, MA), and Imigenex (San Diego, CA) and will be 

discussed individually in the sections to follow.  5-Aza-2’-deoxycytidine (A3656) and 

Trichostatin A (TSA) (T8552) were purchased from Sigma-Aldrich.  Trizol reagent 

(Invitrogen, cat no. 15596-026) was used to isolate RNA.  The puregene DNA purification 

system (Gentra, cat no. D-5000A) was used to isolate genomic DNA.  EZ DNA 

Methylation-Direct Kit (Zymogen, cat. No D5020) was used for bisulfite conversion of 

genomic DNA.  DNA oligo primers (25 nmoles) were purchased for these studies from 

Integrated DNA Technologies (IDT).  Quanti-tect Sybr Green PCR Master Mix (product # 

204143) was purchased from Qiagen (Valencia, CA) and used for all of the Real-time PCR 

analysis.  Superscript III Reverse transcriptase First-Strand Synthesis System for RT-PCR 

(cat no. 1808-051) was used to generate cDNA.  The Real-time PCR machines used in 

these studies were BioRad DNA Engine Peltier Thermal Cyclers with a Chromo 4 Real-

Time Detector attachment. Opticon Monitor Software was used to analyze the Real-Time 

data.    
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Cell culture 

 P and PM MEFs were maintained in DMEM medium (Gibco/Invitrogen) 

supplemented with 15% Fetal Bovine Serum (FBS).  Cells were grown at 370C in 5% CO2.   

 

Chromatin immunoprecipitation- P1 knock-out mouse liver studies.   

 The ChIP protocol described in chapter 2 for mouse liver was applied to profile 

histone H3 acetylation and histone H3 lysine 4 tri-methylation across the mouse fpgs gene 

and to assess Sp1, HNF4, and RNAPII binding to the P2 promoter in mouse liver from 

wild-type and P1 knock-out animals. Cross-linked DNA fragments were sonicated down to 

100-300 bp and DNA size distribution was monitored on agarose gel.  Lysates were rotated 

at 4ºC overnight with 8 µg of anti-RNAPII (Upstate Biotech, 05-623), 4 µg anti-IgG 

(Upstate Biotech, 12-371), or 5 µg of antibodies against phosphoserine 5 peptide from 

RNAPII (Abcam, ab5131), phosphoserine 2 peptide from RNAPII (Abcam, ab5095), 

HNF4 (Santa Cruz sc-8987), acetyl histone H3 lysine 9 (Upstate Biotech, 07-352), tri-

methyl H3K4 (Upstate, 07473), or SP1 (Santa Cruz, sc-59). Real-time PCR was performed 

with 1 µl of final sample dissolved in 100 µl of TE.  The primer sets used to cover the 

entire mouse fpgs gene and to amplify the P2 promoter at high-resolution were the same as 

those described in chapter 2.  

 

RNA isolation from P and PM cells 

 Tissue-culture (100 mm) dishes were plated with P or PM cells and grown to 85% 

confluence.  Pipettes and the workbench were wiped down with RNAse Zap solution 
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(Invitrogen) to limit the amount of RNAses in the environment. The protocol supplied with 

the trizol reagent was followed directly for the purification of RNA.  The 100 mm dishes 

were placed on ice, medium was decanted, and 3 mls of trizol reagent were added to the 

plate.  Cell lysates were taken up several times in a 1 ml filter pipette tip and transferred to 

a 14 ml polypropylene round-bottom Falcon tube (Falcon, cat no. 352059).  The 

homogenized samples were incubated for 5 minutes at RT to allow complete dissociation 

of nucleoprotein complexes.  Six hundred microliters of chloroform were added to each 

tube and the tubes were capped tightly and shaken by hand for 15 seconds, followed by 2-3 

min incubation at RT.  The samples were centrifuged at 12,000 x g for 15 min at 40C.  The 

aqueous phase was transferred to a fresh Falcon tube and 1.5 mls of isopropyl alcohol was 

added to each tube to precipitate RNA.  Samples were incubated for 10 minutes at RT 

followed by centrifugation at 12,000 xg for 10 minutes at 40C.  A transluscent pellet was 

visible at the bottom of the tube and the supernatant was carefully removed by decanting to 

avoid disruption of the pellet.  The RNA pellet was washed by adding 3 mls of 75% 

ethanol in diethylpyrocarbonate (DEPC)-treated water and the tubes were vortexed and 

spun down at 7500 x g for 5 minutes at 40C.  The supernatant was again decanted and 

inverted on the workbench to remove excess ethanol.  The pellets were air dried for no 

more than 2 minutes and resuspended in 100 µl of DEPC-treated water and transferred to a 

RNAse-free 1.5 ml microcentrifuge tube.  The samples were passed through a pipette tip to 

ensure that the RNA was completely resuspended.  If RNA was not completely in solution 

(flakes or pellet could still be visualized) the samples were incubated at 550C for 10 

minutes.  Total RNA was quantified using the NanoDrop ND-1000 spectrophotometer.  
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Five-hundred nanograms of each RNA sample were run on a 1% agarose gel stained with 

ethidium bromide at 100 volts for 30 min to assess the integrity of the RNA by visualizing 

the banding pattern of 28S RNA and 18S rRNA:  if the 28S RNA band was approximately 

2x more intense then the 18S rRNA, the RNA was considered to be intact.   Purified RNA 

was stored at -800C in 3x volume of 100% ethanol or isopropanol and 1/10th the volume of 

NaAc at pH 5.2.   

 

cDNA synthesis of RNA obtained from P and PM cells. 

 Total RNA (2.5 µg to 5 µg) from P and PM cells were used to synthesize cDNA 

with the Superscript III First-Strand Synthesis Reverse transcriptase Kit (Invitrogen).  

RNA was added to a RNAse-free 0.6 ml tube and combined with 1µl of 50µM oligo(dT)20 

primer, 1µl of 10mM dNTP mix, and DEPC-treated water up to 10µl.  The mixture was 

incubated at 650C for 5 min to melt any RNA secondary structure.  The oligo(dT) primer 

was used in these experiments to selectively convert polyadenylated full-length mature 

mRNA into cDNA.  The samples were then placed on ice for at least 1 minute.  In a 

separate 0.6 mL tube the cDNA synthesis mix was prepared by adding the following 

components, 20 µl of 10x RT buffer, 40 µl of 25mM MgCl2, 20µl of 0.1M DTT, 10 µl of 

RNaseOUT (40U/µl), and 10µl of SuperScript III Reverse transcriptase (200U/µl) for 10 

cDNA synthesis reactions.  Ten microliters of cDNA synthesis mix was added to each 

RNA/primer mixture and mixed gently by flicking the tube.  The samples were collected 

by brief centrifugation.  The mixture was incubated at 500C for 50 minutes to allow first 

strand cDNA synthesis.  The reaction was terminated through incubation at 850C for 5 
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minutes.  Following termination, the samples were chilled on ice and were collected by 

brief centrifugation.  One microliter of RNAse H was added to each tube and incubated for 

20 min at 370C.  This step removes the RNA template bound to the newly synthesized 

cDNA allowing for immediate use in PCR.  In addition to the cDNA synthesis reactions 

carried out using total RNA, two control reactions were performed in parallel: 1) One 

reaction was prepared exactly as described above, except that only water was added to the 

primer mixture instead of RNA (no template control).  This reaction controls for RNA or 

DNA contamination in the reagents of the kit.  And 2) A second cDNA synthesis mixture 

was prepared without the addition of the SuperScript III RT (-RT cDNA synthesis 

mixture).  Ten microliters of RNA/primer mixture was added to the –RT cDNA synthesis 

mixture and processed following the protocol outlined above.  This reaction controls for 

the level of genomic DNA contaminating the RNA samples.     

 

Primer design to amplify cDNA encoding mRNA generated at the P1 or the P2 mouse 

fpgs promoters. 

 The fpgs transcripts generated from the two promoters of the mouse fpgs gene are 

splice variants and we used this fact to design primers that would amplify one species over 

another. The sense primer was used to distinguish between the two types of transcripts:  to 

select for P1-specific fpgs cDNA the sense primer was sequence within exon A1b (A1b 

forward), whereas the P2-specific fpgs cDNA was amplified using a sense primer 

positioned within exon 1 (Ex1 forward).  The anti-sense primers used in these experiments 

were complimentary to sequences within exon A1b (A1b reverse), exon 3 (Ex3b reverse), 
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or exon 6 (Exon 6 reverse).  The primers used in a given experiment are noted in the 

Figure Legends. The primers were designed, purchased, and resuspended as described in 

chapter 2.     

 

Semi-quantitative PCR of cDNA generated from RNA of P and PM cells. 

 The semi-quantitative PCR experiments presented in this chapter were performed 

following the same procedure described in chapter 2 with the following exceptions: 1) 1µl 

of cDNA template was added to the 24 µl master mix. and 2) PCR reactions using primers 

specific to fpgs cDNA generated at the P1 promoter were removed at cycles 30, 32, 34, 36, 

and 38.  GAPDH cDNA levels were used as a reference gene to control for variation in 

RNA extraction and cDNA synthesis between samples.  PCR reactions amplifying 

GAPDH cDNA were removed at 8, 10, 12, and 14 cycles in order to visualize the 

production of products in the exponential range.  The primers used to amplify the P1-

specific fpgs cDNA in the semi-quantitative experiments were A1b forwarnd and Exon 3 

reverse.     

 

Real-time PCR of cDNA generated from RNA of P and PM cells. 

 Real-time PCR reaction mixtures were prepared as described in chapter 2 and 3µl 

of cDNA template was added to the 72 µl sub-master mix.  Primers were designed to 

amplify Slpi, cryaa, and GAPDH cDNA in the real-time experiments. Slpi and cryaa were 

control genes for the P and PM cells and GAPDH was a reference gene used to compare 

between cDNA samples (discussed above). The primers used to amplify the fpgs-specific 
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cDNA species were A1b forward, A1b reverse, and Exon 6 reverse.  The reactions were 

pre-incubated at 95oC for 15 min and the amplification conditions for each primer pair 

were 95oC for 45s; 58 oC for 45s, 72 oC for 45s followed by a final extension time at 72 oC 

for 5 min.  Forty PCR cycles were performed for the real-time studies and a plate read step 

was programmed at the end of each cycle to capture the fluorescence in each tube.  Melt 

curve analysis was programmed at the end of the run to measure melting curves of each 

PCR product in one degree increments between the temperatures of 50 oC- 100 oC.  In PCR 

reactions where A1b forward and Exon 6 reverse were used the annealing temperature was 

set to 63 oC degrees.  We found that amplification of P1-specific fpgs cDNA for forty 

cycles generated multiple sized products that encoded species of fpgs cDNA that would not 

generate a full-length protein due to the presence of pre-mature stop codons.  These 

products were detected in melt curve analysis and by visualization on an agarose gel.  By 

using an annealing temperature of 63 oC we were able to obtain single peak melt curves, 

which reflected the desired product as visualized on an agarose gel.  In these experiments, 

a standard curve was not generated and the ΔCt method was used to analyze the real-time 

data (see below).  

 

Analysis of Real-time PCR data 

 Real-time data was analyzed using the ΔCt method.  This method allows relative 

quantification of a gene-specific cDNA relative to the level of the expression of a reference 

gene.  In our experiments, GAPDH levels were used as the reference.  As discussed in 

chapter 2, the threshold cycle number (CT), is the cycle number at which amplified product 
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accumulates to a level where fluorescent signal is detected.  The formula for the ΔCt 

method is  

  Ratio = 2Ct(reference)-Ct(target)   

The CT value determined from the amplification of the cDNA of interest, e.g. P1-specific 

fpgs cDNA, was subtracted from the CT value collected from reactions where GAPDH 

specific product was generated.    

 

Chromatin immunoprecipitation-P and PM cells. 

 The ChIP protocol used in these studies was the same procedure described in 

chapter 2, with minor modifications as discussed below. P and PM were plated in 100 mm 

dishes and allowed to adhere to the plates overnight.  The next day, cells were rocked for 8 

minutes at RT with 1% HCHO in 10 mls of RPMI-1640 medium. Glycine was then added 

to the media to achieve a final concentration of 0.125 M and the cells were rocked for an 

additional 5 minutes. The media was aspirated from the plate and the cells were washed by 

the addition of 5 mls of PBS + 1mM PMSF to the plates.  The PBS was removed and an 

additional 5 mls of PBS + 1mM PMSF was added to the plates.  The cells were removed 

from the plate by scraping and cell suspension was then placed in a 15 ml centrifuge tube.   

The pelleted cells were washed and processed as described in chapter 2.  Two million cells 

were resuspended in 300 µL samples of lysis buffer and sonication was carried out in a 

bath sonicator (Diagenode) to achieve 300-500 bp DNA.  Additional sets of dishes were 

plated with P or PM cells when these experiments were initiated.  The cells were 

trypsinized, pelleted by centrifugation, and were counted using the Beckman coulter 
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counter.  The numbers obtained from these counts were used to estimate the number of 

cells that were cross-linked and lysed.  Two million P and PM cells were sonicated using 

repeated cycles of 30 sec pulse and 30 sec off, followed by the addition of fresh cold ice 

water to the bath for a total sonication time of 25 minutes.  Lysates were rotated at 4ºC 

overnight with 5 µg of antibodies against acetyl histone H3 lysine 9 (Upstate Biotech, 07-

352), tri-methyl H3K4 (Upstate, 07473), or IgG (Upstate Biotech, 12-371). Real-time PCR 

was performed with 1 µl of final sample dissolved in 100 µl of TE.  The primer sets used 

to cover the entire mouse fpgs gene and to amplify at high-resolution the P2 promoter were 

the same as those used in the studies described in chapter 2. 

 

Treatment of P and PM cells with Trichostatin A (TSA).   

 P and PM MEFs were plated in 100 mm dishes and were treated when the plate 

was approximately 70% confluent.  Ten milliliters of fresh media were added to the plates 

and half of the plates were treated with 0.06 µM of TSA.  Three millimolar stock TSA 

solutions were prepared in ethanol.  TSA was diluted in PBS and filter sterilized prior to 

use. The cells were exposed to drug for 12, 24, 48, and 72 hours and fresh drug was added 

every 24 hours. We found that, when MEFs were treated with TSA for more than 24 hours, 

the growth and viability of the cells were severely impacted.  Hence, we focused our 

studies on 12 and 24-hour time points.   At the indicated time points, RNA was isolated, 

cDNA synthesized, and analyzed by either semi-quantitative or real-time PCR.   
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Treatment of P and PM cells with 5-Aza-2’-deoxycytidine.   

 P and PM cells were plated in 100 mm dishes and were incubated overnight to 

allow cells to adhere to the plates.  5daza stock solutions were prepared in sodium 

phosphate buffer and resuspended to a final concentration of 1 mM, diluted in PBS and 

filter sterilized prior to use.  Ten milliliters of fresh media were added to the plates and half 

of the plates were treated with 1µM 5daza for 24, 48, and 72 hours.  Fresh media and drug 

were added every 24 hours.  At the indicated time points, either RNA or DNA were 

isolated from the treated and untreated plates for future use in cDNA synthesis and 

bisulfite sequence analysis, respectively.     

 

Bisulfite sequencing analysis 

 We used bisulfite conversion sequence analysis to quantify the DNA methylation 

present over the P1 mouse fpgs promoter in P and PM cells.  Bisulfite treatment converts 

unmethylated cytidine (C) to uracil, but methyl cytidine is not susceptible to this reaction 

and remain unchanged.  Amplification by PCR replaces the uracils with thymidines (T) 

and sequence analysis is used to determine which cytidine residues were methylated and 

unmethylated within a genomic region of interest. 

 Isolation of DNA 

 Genomic DNA was isolated from P and PM cells using the Puregene DNA 

purification kit.  Cells were trypsinized and pelleted by centrifugation at 500 x g for 5 

minutes.  The supernatant was removed leaving 100-200 µl of residual liquid.  The cell 

pellet was vortexed, resuspending cells to assist with lysis. Two to three million cells were 
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resuspended in 600 µl of lysis solution and pipetted up and down to generate a 

homogenous mixture.  Cellular RNA was removed by the addition of RNAse A (3 µl of 

4mg/ml stock) to the cell lysate.  The sample was inverted 25 times and incubated at 37oC 

for 30 min.  The samples were placed on ice and cooled to room temperature and then were 

transferred to 14 ml Falcon tubes.  Two-hundred microliters of protein precipitation 

solution was added to the RNAseA treated cell lysate.  The samples were vortexed 

vigorously for 20 seconds and then incubated on ice for 5 minutes.  The incubation on ice 

is not required, but I found that it helps the formation of a tight protein pellet after 

centrifugation.  Following incubation, the samples were spun at 2,000 x g for 10 minutes.  

If the precipitated protein pellet was not tightly fixed to the bottom of the tube, the samples 

were vortexed and re-incubated on ice for 5 minutes followed by centrifugation.  The 

supernatant was poured into a fresh Falcon tube containing 600 µl of isopropanol.  The 

tubes were inverted gently fifty times followed by centrifugation at 2,000 x g for 15 

minutes.  The supernatant was poured off and the tubes were inverted on the bench top to 

drain additional liquid.  The samples were washed in 600 µl of 70% ethanol, followed by 

centrifugation at 2,000 x g for 10 minutes.  The ethanol was decanted leaving a small 

amount of residual liquid.  The pellets were transferred to a 1.5 ml DNAse-free 

microcentrifuge tube.  The samples were pelleted by centrifugation at 12,000 x g for 5 min.  

The remaining ethanol was removed and the pellet was allowed to dry on the bench top for 

5 minutes.  One-hundred microliters of DNA hydration solution (Tris-EDTA solution) was 

added to the tubes and the samples were placed at 650C for 1 hour and rotated end-over-
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end overnight at RT.  If genomic DNA was not completely in solution following overnight 

incubation, additional DNA hydration solution was added in 50 µl increments.   

 Bisulfite conversion 

 The EZ DNA methylation-Direct kit (Zymo research) was used for the bisulfite 

coversion of genomic DNA isolated from P and PM cells.  Two-hundred to five-hundred 

nanograms of genomic DNA in a volume of 20 µl were added to 130 µl of CT conversion 

reagent solution to a 0.2 ml PCR tube.  The tubes were placed in a thermal cycler (Biorad), 

which was programmed to incubate the samples at 98oC for 8 minutes, 64oC for 3.5 hours, 

and 4oC for up to 20 hours.  The zymo-spin IC column was placed in a collection tube and 

600 µl of M-binding buffer was added to the column.  The sample was loaded into the 

column containing the M-binding buffer.  The column was capped and inverted several 

times.  The sample was centrifuged at 10,000 x g for 30 seconds and the flow-through was 

discarded.  At this point, the bisulfite converted genomic DNA was bound to the column.  

Desulphonation was carried out using 200 µl of M-desulphonation buffer and incubating 

the samples at RT for 20 minutes, followed by centrifugation at 10,000 x g for 30 seconds.  

The samples were washed with 200 µl of wash buffer to the column and spun down as 

described previously.  The column was placed in a 1.5 ml microcentrifuge tube and the 

bisulfite converted DNA was eluted off the column using 10 µl of M-elution buffer.  The 

tubes were centrifuged at 10,000 x g for 30 seconds to collect the converted DNA.     

 Bisulfite-Specific primer design  

 Bisulfite converted genomic DNA will be rich in adenine (A) and thymidine (T) 

bases, since all cytidine (C) residues will be converted to thymidines except for the few 
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that are in the context of a CpG dinucleotide and methylated.  To design primers for PCR 

of bisulfite-treated DNA, I first converted the sequence of the genomic DNA of the P1 

promoter in silico to reflect the bisulfite treated form.  This made primer design and the 

subsequent sequence analysis very straightforward.  The genomic sequence of the mouse 

fpgs gene was placed in a word document.  The EDIT/REPLACE function was used to 

replace CG with XY.  Then the EDIT/REPLACE function was used to replace C with T 

followed by replacement of the XY with CG.   This generated a sequence where all 

cytidines were replaced by thymidines except for those in the context of a CpG 

dinucleotide.  Primers were designed to amplify four 150 bp to 400 bp sized fragments 

from the -500 nt to +500 nt positions within the P1 promoter region relative to the 

transcriptional start site.  The primers were 20 to 30 bases in length with Tm between 510C 

and 540C (the low Tm is a result of the AT-richness of the sequence) and did not include 

any CG residues (**this is an important point: if one includes CG residues in the primer 

design it is possible to preferentially amplify the methylated form of the desired product 

and overestimate the methylation status of a particular residue). We generated primers with 

at least 5-8 G residues to increase the Tm and the complexity of the primers in an effort to 

minimize non-specific binding. We positioned primers to generate small amplicons  (< 400 

bp) in order to increase the probability of generating an abundant PCR product, since 

fragmentation of genomic DNA does occur during bisulfite conversion.  The fragments 

amplified were between -502 nt and -230 nt, -132 nt and +200, +264 nt and +560 nt, +609 

nt and 1000 nt positions relative to the P1 promoter transcriptional start site.  Primers were 

ordered and resuspended as described in chapter 2.  
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 One microliters of bisulfite treated DNA were added to a 25 µl PCR reaction using 

the HotStarTaq (Qiagen) prepared as discussed in chapter 2.  The AT-richness of the 

genomic DNA can decrease the specificity of PCR reactions.  We used a touchdown PCR 

strategy to increase the specificity of the PCR amplifcation of the bisulfite converted DNA. 

Touchdown PCR enhances the specificity of the initial primer–template duplex formation 

by using initial annealing temperatures that are 5–10°C above the Tm of the primers. In the 

following cycles, the annealing temperature was decreased by 0.50C/cycle until the Tm of 

the primer is reached.  This is followed by additional rounds of PCR using the annealing 

temperature of the Tm of the primer.  The touchdown program used for all four primer 

pairs specific to bisulfite converted genomic DNA of the P1 promoter region was: 950C 15 

min, 950C 30 sec, 620C->520C for 30 sec with a decrease of Tm 0.50C per cycle (20 

cycles), 720C 30 sec, followed by 950C 30 sec, 520C 30 sec, 720C 30 sec, for 36 additional 

cycles, with a final extension step at 720C for 5 minutes.  Ten microliters of reaction were 

visualized using 1% agarose gel stained with ethidium bromide.  The touchdown PCR 

protocol generated single products at the correct size, which could easily be excised from 

the gel and purified.   

 Gel purification 

 The products of the bisulfite-specific PCR reaction were cut out of the agarose gel 

using a clean razor blade while visualizing the bands using a long-wavelength UV lamp.  

The gel slice was transferred to a pre-weighed 1.5 mL microcentrifuge tube and weighed 

again.  The weight of the gel slice was obtained by subtracting the weight of the empty 

tube from the weight of the tube with the gel slice.  The DNA was purified from the gel 
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slice using the Promega Wizard SV Gel and PCR Clean-up system (Promega).  Membrane 

binding solution was added to the tube with the agarose gel slice (10µl/10 mg of gel slice).  

The samples were vortexed and incubated at 550C for 10 minutes, with frequent mixing, so 

that the gel slice was completely dissolved.  The mixture was transferred to an assembled 

SV minicolumn and incubated for 1 minute at room temperature, to allow binding of the 

DNA to the column.  This was followed by centrifugation of the column at 16,000 x g for 

1 minute.  The flow-through was discarded.  Membrane wash solution (700 µl) was added 

to the column and spun down as above, followed by a second round of washing using 500 

µl of wash solution. The flow-through was discarded and remaining ethanol was removed 

by a final spin at 16,000 x g for 1 minute.  The column was placed in a fresh 1.5 mL 

microcentrifuge tube and 50 µl of Nuclease-free water was added to the center of the 

column and incubated for 1 min at room temperature.  The DNA was collected by 

centrifugation for 1 minute at 16,000 x g in the microcentrifuge tube.   

 TOPO TA Cloning  

 The purified PCR products were cloned using the TOPO TA cloning system from 

Invitrogen.  This system takes advantage of the fact that Taq polymerase adds a single 

deoxyadenosine to the 3’ ends of PCR products. The vector has an overhanging 3’ 

deoxythymidine residue, which allows efficient ligation of the PCR product into the 

vector. The plasmid vector pCRIV-TOPO was used for sequencing. Four microliters of 

PCR product were added to 1 µl of salt solution and Topo vector.  The reaction was mixed 

gently and incubated for 5 minutes at RT and were then placed on ice.  A reaction was also 
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prepared that only included vector, which served to control for random integration or re-

ligation events that would result in false-positive colony formation after transformation.  

 Transformation of chemically competent TOP10 cells (Invitrogen) 

  The TOPO cloning reactions prepared in the last section were transformed into 

E.coli; uptake of the plasmid was detected through selection for antibiotic resistance.   

Blue-white screening was used to select colonies with plasmids that were successfully 

ligated.  For each transformation one vial of TOP10 chemically competent cells (provided 

at a transformation efficiency of 1 x 109 cfu/ug of supercoiled DNA) and two Luna-Bertani 

(LB) agar plates formulated with 50 µg/ml of carbenicillin (Sigma) were used.  SOC 

medium (Invitrogen) was thawed and warmed to RT.  The LB plates were warmed at 370C 

for 30 minutes followed by the addition of 40 µl of X-gal (40 mg/ml) on each LB plate and 

re-incubation at 370C.   The vials of one-shot TOP10 cells were thawed on ice.  Two 

microliters of TOPO-cloning reaction for each PCR product was added to the vial, 

followed by gentle mixing.  The TOP10 cells were incubated for 30 minutes on ice.  The 

E.coli were heat shocked at 420C for 30 seconds to allow uptake of the recombinant 

plasmid.  The tubes were transferred to ice and 250 µl of S.O.C. medium was added.  The 

samples were shaken at 370C for 1 hour at 200 RPM to allow expression of the plasmid 

and 50 µl and 100 µl of each reaction (including the vector only control) were plated on 

LB-agar plates with carbenicillin and X-gal.  The plates were incubated overnight at 370C.  

The transformation efficiency was controlled by for addition of 10 pg of puc19 plasmid to 

a vial of TOP10 cells and plating 10 µl of this mixture on an LB-agar plate. 

 Picking colonies    
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 Blue-white screening increases the probability of selecting a colony that has 

plasmid with the desired insert: transformants with recombinant plasmid will have a 

disrupted lacZ-α gene and will not be able to metabolize X-gal, appearing as colorless 

colonies on the plate, whereas those that have been transformed with plasmid not 

containing an insert will metabolize X-gal and produce blue colonies.  Ten white colonies 

were picked for each transformation reaction and placed in 4 mls of LB with 4 µl of 

carbenicillin (50 mg/ml stock).  The bacteria were grown with shaking at 250 RPM at 370C 

overnight.  Recombinant plasmid was isolated using the Wizard Plus SV Mini-Prep Kit 

according to the manufacturer’s instructions (Promega, cat no A1460).  Isolated plasmid 

from each clone was digested with EcoRI and the sizes of the digested products were 

visualized on a 1% agarose gel stained with ethidium bromide.  Verified plasmid (100 

ng/ul) was sequenced through the Nucleic Acids Research Facility (VCU) using the ABI 

3700 Prism 96 Capillary sequencer.  The sequence data was best when either vector 

specific M13 reverse primer or gene specific anti-sense primers were used.    

 

Western blot analysis 

 Cellular lysate preparation 

 At the time of harvest, cells were washed with ice-cold PBS +1mM PMSF and 

removed from the plates using a cell scraper.  Scraping was performed on ice.  Cells were 

placed in a 15 ml conical and pelleted at 300 x g for 5 minutes at 4oC, and washed again 

with 10 mls of ice-cold PBS + 1mM PMSF.  Cells were again pelleted by centrifugation 

and resuspended in 1ml of ice-cold PBS + 1mM PMSF.  The cells were transferred to a 
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pre-weighed 1.5 ml centrifuge tube and spun down at 12,000 x g for 5 minutes at 40C.  The 

supernatant was aspirated and the cell pellets were weighed and lysed in 10x volumes of 

lysis buffer (62.5 mM Tris pH 6.8, 5% glycerol, 2% SDS, 5% 2-mercaptoethanol, and 1x 

protease inhibitor complete cocktail (Roche)).  The samples were passed through a 21-

gauge needle several times, and debris was pelleted by centrifugation at 10,000 x g for 5 

minutes at 4oC.  This step was performed twice.  We found that aspirating two times 

increased the amount of protein obtained from the lysates.  The supernatant was aliquoted 

and stored at -800C.  Protein concentrations were determined by the Biorad-Bradford 

protein assay according to the manufacturer’s instructions against a standard curve 

generated by measuring the absorbance of known concentrations of bovine serum albumin 

at 595 nm.  

 SDS page and immunoblotting 

 Twenty micrograms of total cellular protein were diluted in 2x volume of Laemmli 

sample buffer (Biorad 161-0737).  Lysates were boiled for 5 minutes followed by brief 

centrifugation to collect the samples. The pre-made SDS polyacrylamide gels (Biorad) 

were assembled in a electrophoretic gel box unit (100 cm x 6.5 cm), and running buffer (25 

mM Tris base, 250 mM glycine, 0.1% SDS) was poured into the apparatus. The combs 

were removed and the wells were flushed with buffer to remove any debris.  The samples 

and a pre-stained protein standard ladder (Biorad) were added to the wells. The total 

cellular proteins were resolved by electrophoresis on a 4-15% SDS polyacrylamide gel 

(Biorad) in running buffer.  Gels were run for approximately 1 hr at 100 volts.  
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 Proteins were transferred to an Immobilon polyvinylidene fluoride (PVDF) 

membrane (Millipore) in 1x Towbin buffer (25 mM Tris, pH 8.3, 192 mM glycine, 10% 

methanol, 0.04% SDS) using a semi-dry apparatus.  Nine pieces of Whatman paper were 

soaked in Towbin buffer and placed into the bottom of the transfer unit.  The PVDF 

membrane was soaked in 100% methanol and placed on top of the Whatman paper.  The 

gel was placed on top of the PVDF membrane and covered with six additional pieces of 

Whatman paper.  The transfer was run at 40 mAmps per gel for approximately 3 hours.  

Following transfer, the membranes were dipped in methanol and allowed to dry at room 

temperature for 15 minutes.  Non-specific protein binding was blocked using 

StartingBlock Blocking Buffer (cat no. 37542, Pierce) for 1 hour at RT.  Blots were 

washed with 0.05% TBS-T (0.5M Tris pH 7.5, 0.14M NaCl, 2.7 mM KCl, 0.05% Tween 

20) three times for 5 minutes at RT.  Primary antibodies were diluted in Startblocking 

buffer and incubated at 40C overnight.  The primary antibodies used were DNMT3a (cat 

no. IMG-266A, Imgenex) at 1:250, DNMT3b (cat no. IMG-184A, Imgenex) at 1:250, and 

DNMT1 (ab19905, Abcam) 1:1000.  Following incubation, the blots were washed three 

times in TBS-T for 5 minutes and membranes were incubated with goat-anti mouse 

(DNMT3 blots) or goat-anti-rabbit (DNMT1 blots) secondary antibody with horseradish 

peroxidase conjugate (1:10,000) for 1hr at room temperature (Pierce) in StartingBlock 

Buffer.  The blots were again washed as described above. Chemiluminescence was 

detected using the SuperSignal West Pico and West Dura Chemiluminescent Substrate Kits 

(Pierce).  
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RESULTS 
 
 The studies presented in chapter 2 left us with a series of questions that could not 

be pursued through observations of the wild-type mouse.  We have designed a series of 

experiments using two model systems with primary disturbances in P1 activity and DNA 

methylation to address these remaining questions.     

 

Transcriptional interference studies: 

 The studies presented in this chapter addressing the contribution of transcriptional 

interference to the regulation of the P2 promoter of the fpgs gene in mouse liver have been 

pursued in collaboration with Lin-Ying Xie, a former student in the laboratory.  She has 

generated the critical tool for these experiments: the P1 knock-out mouse (263).  

 

Histone H3 acetylation is less abundant across the fpgs gene in knock-out liver.   

 We questioned if P1 activity was causative of histone H3 acetylation across P1 and 

P2 mouse liver by comparing the levels of histone H3 acetylation found in wild-type tissue 

with those detected in the P1 promoter knock-out mouse liver.  ChIP analysis using an 

antibody raised against H3K9Ac was performed as and fragments of the fpgs gene were 

amplified using Q-PCR described in chapter 2.  The amplicons were spaced 1.5-2.0 kb 

apart and the genomic region probed in these experiments spanned from -2 kb upstream to 

+ 15 kb downstream of the P1 promoter transcriptional start site.  Amplification of P1 in 

wild-type animals was not included in these studies, since these sequences were not 

present in the knock-out animals. The degree of H3K9 acetylation throughout the fpgs 
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gene was markedly lower in liver from the P1 knock-out mouse than in wild-type mouse 

liver (Figure 3-1).   This observation is in agreement with the concept that histone H3 

acetylation is commonly localized at nucleosomes surrounding active or poised genes (87).   

Surprisingly, the relative patterns of H3K9Ac between the two samples were almost super-

imposable, and the profile determined in knock-out mouse liver was significantly different 

than the patterns previously described in L1210 cells or mouse brain (Fig 2-12).  It should 

be noted that in knock-out liver, there was a measurable increase in H3K9Ac starting 2 kb 

upstream of the P2 transcriptional start site and peaking at promoter, whereas in wild-type 

liver H3K9Ac between these two amplicons remained constant (Figure 3-1).  We took this 

change to reflect the increase in transcriptional activity observed at the P2 promoter in the 

liver of P1 knock-out animals.  These data suggested that P1 transcriptional activation 

caused the high levels of histone H3 acetylation across the fpgs gene in mouse liver, but it 

appeared that additional tissue-specific mechanisms were involved in dictating the pattern 

of histone acetylation found in mouse liver.  

 

Histone H3 lysine 4 tri-methylation across the fpgs gene in knock-out and wild-type 

mouse liver.   

 An enrichment of histone H3 lysine 4 tri-methylation has been associated with 

nucleosomes surrounding promoter regions bound by RNAPII complexes engaged in 

active transcription or in a poised state in both mammals and yeast (13, 186).  We probed 

the fpgs gene in wild-type and knock-out mouse liver for this histone PTM and found 

patterns not entirely predicted by previous studies.  H3K4me3 was found to be higher over 
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the P2 promoter region in knock-out mouse liver than in wild-type tissue (Figure 3-2); this 

supports the observation that P2 expression increases in the P1 knock-out mouse liver.  

Abundant levels of H3K4me3 between -2 kb and + 2 kb relative to the P1 transcriptional 

start site were detected in wild-type mouse liver, but were completely lost with the removal 

of P1 activity in knock-out mouse liver samples (Figure 3-2), suggesting that H3K4me3 of 

the nucleosomes surrounding this region was directly linked to the level of P1 

transcriptional activity.  The substantial level of H3K4me3 detected at + 3.5 kb relative to 

the P1 transcriptional start site in knock-out mouse liver was very surprising and implied 

that RNAPII complexes were binding to this region of the fpgs gene (Figure 3-2).  We 

considered the possibility that loss of P1 activity permitted transcriptional initiation at a 

cryptic promoter in this tissue not previously identified through 5’ RACE and RPAs (202, 

244).     

 

 P2 expression and levels of the general transcription factor Sp1 and of HNF4, a 

tissue-specific factor, at the fpgs gene in wild-type and knock-out mouse liver.     

 In the previous chapter, we proposed that the activity of the P2 promoter in mouse 

liver was restricted by transcriptional interference through a mechanism of promoter 

occlusion.  Using Q-Rt-PCR, Lin Xie determined that P2 expression in knock-out mouse 

liver increased between 4 and 6-fold when compared to the level of P2 expression in wild-

type mouse liver (263).  These data represent the influence of transcriptional interference 

on P2 expression in mouse liver.  Interestingly, the level of P2 expression detected is at 

least two orders of magnitude lower than the amount of P2-specific transcript generated in 
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actively dividing cells, i.e. L1210 cells.  In order to confirm that promoter occlusion was 

occurring at P2 in mouse liver, we probed for Sp1 at positions -200 and + 200 relative to 

the P2 transcriptional start site in wild type and knock-out mouse liver.  Sp1 residence at 

P2 was negligible when compared to the non-specific IgG control in wild-type liver 

(Figure 3-3 A).  In contrast, amplification of these fragments of P2 was enriched in knock-

out liver (Figure 3-3 A).  These data, coupled with Lin Xie’s analysis of expression 

directly supported the idea that P1 activity repressed the P2 promoter by preventing the 

assembly of a PIC, through a mechanism of promoter occlusion.  

 In silico analysis of the mouse fpgs gene revealed consensus DNA binding 

sequences for hepatic nuclear factor 4 (HNF4) within the regions of the P1 and P2 

promoters. HNF4 is a tissue-specific factor involved in directing the cell-type specific 

expression patterns detected in differentiated hepatocytes.  HNF4 occupancy has been 

shown to recruit HATs, chromatin remodeling complexes, and general transcription factor 

components of the PIC (215).  The role of HNF4 in the regulation of the mouse fpgs gene 

has not previously been studied. As discussed in the preceding chapter, the P2 promoter in 

wild-type mouse liver is not completely silenced, but the level of expression is extremely 

low when compared to L1210 cells (< 0.75%).  As a starting point to understanding if 

HNF4 was involved in regulating P2, we assessed the residence of this factor at P2 (Figure 

3-3 B).  We detected HNF4 at positions -200 nt and +200 nt relative to the P2 

transcriptional start site at similar levels in both wild-type and knock-out mouse liver, both 

substantially above the non-specific IgG control (Figure 3-3 B).  Additionally, since the 

levels of HNF4 between the wild type and knock-out samples were comparable it appeared 
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that the residence of HNF4 at the P2 promoter was not affected by the transcriptional 

activity of the P1 promoter.  This was quite a surprise, since Sp1 occupancy at the P2 

promoter was found to inversely correlate with P1 activity in mouse liver (Figure 3-3 A).  

How molecules of HNF4, but not Sp1, were able to bind to the P2 promoter in wild-type 

mouse liver is a very interesting question that remains to be understood.  

 

Occupancy of RNAPII across the P2 promoter in wild-type and knock-out mouse 

liver.  

 In our previous work, we mapped the residency of RNAPII across the P2 promoter 

region in mouse liver, L1210 cells, and mouse brain using high-resolution ChIP walking.  

The profiles determined for the three tissues were remarkably different (Figures 2-22 thru 

24). We were interested in determining if the increase of P2 transcriptional activity 

observed in knock-out mouse liver would alter the pattern of RNAPII binding across the 

P2 promoter.  We used ChIP walking to assess the residence of RNAPII across this region 

in knock-out mouse liver (Figure 3-4).  P2 was divided into six overlapping fragments as 

described in Figure 2-18.  ChIP analysis was performed on liver from wild-type and 

knock-out animals using antibodies generated against total, phospho-serine 5, and 

phospho-serine 2 RNAPII.  As discussed in chapter 2, antibodies generated against the 

CTD of RNAPII phosphorylated at either serine 5 or serine 2 are often used as markers of 

early and late stages of elongation, respectively (81, 133).  Total RNAPII was again 

detected across the P2 promoter region at similar levels in wild-type mouse liver (Figure 3-

4 A) as in previous experiments (Figure 2-23). The occupancy of RNAPII complexes 
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phosphorylated at serines 5 and 2 reflected the levels of total RNAPII detected across P2 in 

wild type tissue (Figure 3-4 A).  ChIP using knock-out liver showed total levels of RNAPII 

gradually increasing across P2 and peaking between the +1 and +200 positions relative to 

the P2 transcriptional start site (Figure 3-4 B).  The level of RNAPII complexes 

phosphorylated at Serine 5 also reached a maximum between the +1 and +200 positions, 

reflecting an increase in total RNAPII levels (Figure 3-4 B). In contrast, the amount of 

RNAPII phosphorylated at Serine 2 did not increase with total RNAPII and remained fairly 

constant throughout the entire P2 promoter region in knock-out mouse liver (Figure 3-4 B). 

Since loss of P1 caused an increase in P2 transcriptional activity, we took the profiles of 

RNAPII detected in knock-out liver to represent complexes engaged in initiation and the 

early stages of elongation.  The patterns of RNAPII complexes detected in knock-out 

mouse liver were different than those determined across the active P2 in L1210 cells 

(Figures 3-4 B and 2-22).  In fact, the profile was more closely related to those previously 

described in mouse brain (Figures 3-4 B and 2-22), a tissue where RNAPII complexes are 

poised for activation.  The studies using tissues from the knock-out animals are 

preliminary, but it is interesting to consider that the level of transcriptional activity 

generated at P2 may determine the distribution of RNAPII across the region.  Also, since 

the levels of P2 expression in knock-out mouse liver were orders of magnitude lower than 

those detected in L1210 cells, it may be the case that a proportion of the RNAPII 

complexes detected across P2 in this tissue were actually poised but inactive as in mouse 

brain.   
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 Overall, our studies confirm that transcriptional interference plays a role in 

silencing P2 in mouse liver, but other mechanisms are most likely involved in enhancing 

P2 activity to the levels observed in L1210 cells.  Sp1 binding to the P2 promoter increased 

substantially in mouse liver when P1 activity was eliminated.  This is one of the first pieces 

of data directly supporting a regulatory mechanism of promoter occlusion at a mammalian 

gene in vivo.   

 

DNA methylation studies 

 We previously identified the P1 promoter of the mouse fpgs gene as a tissue-

specific differentially methylated region: the CpGs within this promoter were methylated 

in tissues where P1 is silent, i.e. L1210 cells, and hypomethylated in tissues where P1 is 

active, i.e. mouse liver (Figure 2-9).  We took this to suggest a role for DNA methylation 

in the regulation of the tissue-specific expression patterns generated from the P1 promoter.  

In order to test this hypothesis we designed a series of experiments using a model system 

generated by Cedar et. al (137), a mouse embryonic fibroblast (MEF) cell line reported to 

have low levels of global DNA methylation due to the homozygous disruption of the 

DNMT1 endogenous loci (PM cells).  These cells are p53-deficient, which enables these 

cells to maintain viability after several passages in culture.  The control for these 

experiments was a MEF cell line that is p53-deficient (P cells).  
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Expression of control genes and activity of the P2 mouse fpgs gene promoter in P and 

PM cells.   

 In the study published by Cedar et. al using the PM cell line, two groups of genes 

were defined that appeared to be regulated by DNA methylation.  Group A included genes 

that were transcriptionally silent in P cells but active in PM cells, where global DNA 

methylation is greatly suppressed.  In contrast, the genes within group B were only 

expressed in PM cells that were treated with a histone deacetylase inhibitor, trichostatin A 

(TSA) (137).  The investigators concluded that genes in Group A were primarily regulated 

by DNA methylation, but additional mechanisms were involved in controlling the 

expression of genes within group B, since demethylation was not sufficient to activate 

transcription from the genes in this population (137).  Dr. Cedar kindly sent us a flask of P 

and PM cells and we initiated our studies by measuring the expression of a gene within 

either group A (Slpi) or group B (Cryaa) to repeat the work Cedar published in the original 

paper.  RNA was isolated from P and PM cells and was converted to cDNA and the 

expression of Cryaa and Slpi was assessed using Q-PCR.  The ΔCt method was used to 

analyze Cryaa and Slpi expression relative to the expression of our chosen reference gene, 

glyceraldehydes-3-phosphate dehydrogenase (GAPDH).  The results from this initial study 

were quite surprising (Figure 3-5).  Slpi expression increased in PM cells, when compared 

to P cells by approximately 9-fold (Figure 3-5), as predicted by the fact that this gene was 

placed within group A.  However, the increment of expression observed was much less 

than the 50-fold change reported previously for Slpi by Cedar’s group.  The cryaa gene 

was originally classified as a group B gene by Cedar et. al and thus we expected that little 
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to no change in expression levels would be detected between P and PM cells.  In striking 

contrast, cryaa expression dramatically increased over 2000-fold in our experiments 

(Figure 3-5).  These observations have been repeated, the primers have been checked, and 

the PCR products visualized on an agarose gel stained with ethidium bromide to verify that 

the product generated was the size predicted by the genomic sequence.  Additionally, 

parallel experiments performed by Erica Peterson in Dr. Taylor’s laboratory confirmed that 

the PM cells obtained from Cedar had markedly lower levels of DNMT1 than the P cells, 

confirming that we were working with the correct cell lines (data not shown).  We 

concluded that the cryaa gene in our hands was clearly not a gene that should be classified 

within group B, but rather represented a gene within group A.   

 In dividing mouse cells, fpgs mRNA is generated from the sole use of the P2 

promoter (244). We measured the level of fpgs cDNA complimentary to mRNA 

originating from transcriptional initiation at the P2 promoter in both P and PM cells.  We 

applied real-time PCR and used the ΔCt method to analyze P2 expression relative to 

GAPDH (Figure 3-5).  The level of P2 expression in the P and PM cell lines was found to 

be identical, suggesting that any transcriptional activity at P1 in PM cells was not 

interfering with initiation at P2.  

 

 Changes in P1 expression observed in the hypomethylated PM cell line. 

 To test our hypothesis that DNA methylation was involved in regulating the 

expression of the P1 promoter, we questioned if the global loss of DNA methylation 

observed in PM cells by Cedar et. al altered the expression of the P1 promoter.  In the 
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experiments presented in Figure 3-6, cDNA encoding P1-specific fpgs mRNA was 

amplified using semi-quantitative PCR and real-time PCR analysis. Semi-quantitative PCR 

showed that P1-specific cDNA levels appeared at earlier cycles in PM cells than in P cells, 

suggesting that the amount of P1-specific cDNA in PM cells was slightly higher than in P 

cells (Figure 3-6 A).  The amount of GAPDH cDNA determined by semi-quantitative PCR 

was very similar between P and PM cells, as judged by visualization of the products on an 

agarose gel stained with ethidium bromide (Figure 3-6 A).  Real-time PCR analysis 

showed that in PM cells the P1-specific cDNA levels ranged from 2.5-5.0-fold higher than 

those detected in P cells (Figure 3-6 B).  We used the two PCR approaches because we 

found that in P cells multiple products were generated at later PCR cycles.  These products 

were clearly different sizes than the expected fragments, and sequencing of the products 

determined that they included varying segments of the intron between A1b and exon 1, and 

some of the products also included part of exon 1.  All of the alternate species generated in 

P cells that were sequenced contained premature stop codons and were not predicted to 

generate full-length FPGS protein.   

 The alternate products posed a problem for analysis by real-time PCR, and 

therefore we designed primers within exon A1b to estimate of the difference between the 

levels of P1-specific fpgs cDNA in P and PM cells.  This approach was flawed for a couple 

of reasons: 1) It is always a risk to amplify cDNA using primers within the same exon, 

since even small levels of contaminating genomic DNA can substantially influence the 

data.  And 2) The multiple pseudo-products generated from P1 in P cells were still 

measured using this approach, and thus the levels calculated in P cells were most likely an 
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over estimate of the levels of correct fpgs cDNA transcript generated from P1 in P cells.  

However, we have verified the real-time data using semi-quantitative PCR and in later 

studies incorporating the use of an anti-sense primer complimentary to exon 6, which 

generated single products when the annealing temperature was set to 63oC or above.  As 

such, the combined data confirmed that, in PM cells, P1 expression increased on average 

between 2.5-5.0 fold compared to the levels determined in P cells.   

 

Bisulfite sequencing of the P1 promoter region revealed a surprising pattern of DNA 

methylation in PM cells.     

 We performed bisulfite sequencing analysis of the 19 CpG dinucleotides within 1.5 

kb of the P1 promoter spanning the region -500 nt to +1000 nt relative to the P1 

transcriptional start site in P and PM cells.  We sampled this region by designing primer 

pairs to amplify four 300-350 bp fragments. The CpGs within the P1 promoter in P cells 

were almost completely methylated, in agreement with the DNA methylation profile across 

P1 previously described for other murine dividing cells, i.e. L1210 cells (Figure 3-7, closed 

circles).  However, the pattern of DNA methylation detected in PM cells across this region 

was very surprising: P1 remained abundantly methylated (Figure 3-7), in spite of the fact 

that genomic DNA from PM cells were found previously to be largely unmethylated (137).  

Remarkably, significant differences in the level of methylation at individual CpG residues 

throughout the region were apparent, and it appeared that loss of DNA methylation was 

reserved for the CpGs at positions -500, -250, and +50 nt relative to the P1 transcriptional 

start site.  The methylation of the CpG at +50 nt approached zero, and its proximity to the 
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transcriptional start site was extremely interesting.  Additionally, the methylation of the 

CpGs between +750 and +1000 nt was also decreased in PM cells compared to P cells by 

approximately 40%.  However, the methylation levels across this 250 bp fragment 

remained substantially higher than the level of DNA methylation determined at these CpGs 

in mouse liver, which were found methylated in only 25% of the sequenced clones.  How 

the DNA methylation is maintained across this region in PM cells remains an open 

question.   It should be noted that work in Dr. Taylor’s laboratory has shown that there are 

residual levels of DNMT1 in PM cells, supporting the idea that the PM cell line should be 

considered a DNMT1 hypomorph, rather than a complete knock-out cell line.  These data 

suggested that the loss of CpG methylation at a few residues within the 1.5 kb region was 

sufficient to cause the increase observed in the transcriptional activity of P1 in PM cells.  

 

Histone H3 acetylation and lysine 4 tri-methylation across the mouse fpgs promoters 

in P and PM cells.   

 The interplay between DNA methylation and several histone PTMs has been well 

described, but in many cases the causative epigenetic modification remains unknown (74).  

In chapter 2, we determined that loss of DNA methylation at P1 in mouse liver was 

coincident with an increase in P1 transcriptional activity and H3Ac and H3K4me3 of 

regional nucleosomes. In these studies, we used the P and PM cells to question if loss of 

DNA methylation was sufficient to cause an increase in H3Ac and/or H3K4me3.  ChIP 

experiments were performed using P and PM cells with antibodies generated against 

H3K9Ac and H3K4me3.  Real-time PCR was used to amplify regions of genomic DNA 
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within the P1 and P2 promoters and enrichment at the P2 promoter was used as a positive 

control.  As expected, the histones surrounding the P2 promoter in both cell lines were 

decorated with abundant levels of H3Ac and H3K4me3 (Figure 3-8), reflecting the 

transcriptional activity of this promoter in these dividing cells.  Histone H3 acetylation was 

also detected across the P1 promoter in both P and PM cells when compared to the non-

specific IgG control (Figure 3-8).  We were very surprised by the high levels of histone H3 

acetylation detected over P1 in P cells.  Histone acetylation at this promoter in L1210 cells 

was previously detected, but the levels found in P cells are more abundant. We are not yet 

clear on the cause of this increase in acetylation at P1 in P cells, but it may very well be a 

consequence of the p53-null status of the P cells.  Interestingly, the amount of H3Ac found 

over P1 in PM cells was 1.5x higher than that observed in P cells, a factor that was 

calculated by normalizing the levels of H3Ac measured over P1 to those observed over the 

P2 promoter in the respective cell lines.  We took this to suggest that the changes of DNA 

methylation patterns at the P1 promoter observed in PM cells were impacting the level of 

H3Ac across the promoter.     

 The presence of H3K4me3 across a promoter region in both yeast and mammals 

has been tightly linked to the presence of RNAPII complexes (13, 87, 186).  The 

transcriptional activity of P1 was found to increase slightly in PM cells (Figure 3-6), 

however H3K4me3 was not detected across P1 in the hypomethylated PM cells (Figure 3-

8).  From these data, it appeared that the altered patterns of DNA methylation observed at 

positions -250 nt and +50 nt (Figure 3-5), and/or the slight increase in P1 activity detected 

in PM cells (Figure 3-6) were not sufficient to enhance H3K4me3 across this promoter; it 
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appeared that H3K4me3 at the P1 promoter was more tightly correlated with 

transcriptional activity, rather than DNA methylation patterns.   

 

 Inhibition of histone deacetylase activity enhances P1 activity in P and PM cells, but 

more substantially in PM cells.   

 Methyl-binding proteins are recruited to methylated CpG dinucleotides and often 

serve as a scaffold for large repressor complexes that include chromatin remodeling and 

HDAC enzymes (123, 170).  As a result, histone deacetylation and DNA methylation have 

been shown to cooperate in mediating transcriptional silencing at several CpG-dense 

promoters.  It was not clear if the link between DNA methylation and HDAcs would 

translate to the CpG-sparse P1 promoter.  As Cedar’s group described, a large proportion 

of mammalian genes require both loss of methylation and inhibition of histone 

deacetylation to achieve transcriptional activation. We questioned if HDAC inhibition 

would enhance the P1 transcriptional activity in P and PM cells.  Cells were treated with 

0.06 µM TSA for 12, 24, 48, and 72 hours and P1-specific fpgs cDNA was measured using 

semi-quantitative and real-time PCR as described for Figure 3-6.  Slpi expression was 

measured as a control.  The growth of the two cell lines was significantly impacted by 

treatment with TSA for 48 and 72 hours, and to minimize the influence of secondary drug 

effects these cells were not processed.  Treatment with TSA for 24 hours increased the 

expression of Slpi 7-fold and 22-fold in P and PM cells, respectively (data not shown).  

However, this treatment did not reproducibly alter the level of P1 transcriptional activity in 

either P or PM cells (data not shown). Slpi expression was also increased when cells were 
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treated for 12 hours with TSA but to a lesser extent than observed after 24 hours of 

treatment: expression increased 4-fold in P cells and 6-fold in PM cells (Figure 3-9).  On 

the other hand, the level of P1 activity appeared to increase in both P and PM cells when 

cells were treated with TSA for 12 hours (Figure 3-9).  P1-specific fpgs cDNA levels 

increased in P cells approximately 4-fold and increased in PM cells approximately 8-fold 

above the levels of P1 expression detected in the respective cell lines without TSA 

treatment (Figure 3-9).  As such, HDAC inhibition coupled with the changes in DNA 

methylation appeared to further enhance P1 activity in PM cells.  It is interesting to note 

that the level P1 expression detected in P cells treated with TSA approached the amount of 

P1-specific fpgs cDNA found in PM cells relative to GAPDH expression (Figure 3-9).  

Since DNA methylation was not substantially lost across P1 (Figure 3-7), we considered 

the possibility that the effect of TSA treatment on the expression of P1 in PM cells would 

be enhanced if the methyl groups of the CpGs across P1 were further depleted.  

 

 5-aza-deoxycytidine treatment of P and PM cells for 24 and 48 hours.   

 We could not fully understand the role of DNA methylation in the control of the 

tissue-specific expression pattern of the P1 promoter without further depleting the CpG 

dinucleotides in this region of methyl groups.  We questioned if further inhibition of DNA 

methyltransferase activity would result in loss of DNA methylation and enhanced 

transcriptional activity at the P1 promoter in PM cells.  To test this we treated P and PM 

cells with 1µM of 5-aza-deoxycytidine (5daza), an inhibitor of the DNA 

methyltransferases, for 24, 48, and 72 hours.  The growth and viability of the P cells were 
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substantially impacted by treatment with 5daza for 48 and 72 hours, however PM cells 

appeared to grow normally and were unaffected by the presence of 5daza in the medium.  

The resistance of DNMT1 hypomorphs to 5daza treatment has been previously described 

in HCT116 cells (60).  This observation is not surprising since the major target of this 

drug, DNMT1, is already substantially reduced in PM cells.  In these studies, we isolated 

RNA and DNA from the treated P and PM cells for expression analysis and bisulfite 

sequencing. 

 Following 24 and 48-hour treatment with 5daza the expression of P1-specific fpgs 

transcript was measured in P and PM cells (Figures 3-10 and 3-11).   P1 activity did not 

increase in PM cells treated for 24 hrs (Figure 3-10), however following 48 hours of 

treatment the level of P1 activity measured by fpgs cDNA increased approximately 5-fold 

compared to the amount of P1-specific fpgs cDNA detected in untreated PM cells (Figure 

3-10).  The doubling time of the PM cells is approximately 18 hours, and the effect of 

DNA methyltransferase inhibition on the transcriptional activity of the P1 promoter 

appeared to require two-rounds of DNA replication.  It is possible that a substantial loss of 

DNA methylation across P1 in PM cells does not occur until 48 hours after treatment.   

 Bisulfite sequencing analysis was performed using genomic DNA isolated from 

PM cells after 24 hours of treatment with 5daza. We have also planned to perform this 

analysis using DNA harvested from PM cells treated for 48 hours with 5daza.  The level of 

DNA methylation was in PM cells 24 hrs after treatment with 5daza (Figure 3-12 A, open 

circles).  However, the change in DNA methylation was reserved to a cluster of CpGs 

between +100 nt and +750 nt positions relative to the P1 transcriptional start site, when 
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compared to the level of DNA methylation found in untreated PM cells (Figure 3-12 A, 

closed circles).  The CpGs upstream of position -250 nt and downstream of +750 nt were 

methylated in a remarkably similar manner to the same residues in untreated PM cells 

(Figure 3-12 A).   The distinctly localized change in DNA methylation observed in PM 

cells treated with 5daza reflected the punctate pattern of hypomethylation found at 

individual CpGs in the untreated PM cells (Figure 3-12 A, closed circles).   These data 

identify four categories of CpGs within the P1 promoter, based on their sensitivity to loss 

of DNA methyltransferase activity: 1) CpGs located between -500 and -250 on average 

maintained methylation in PM and PM+5daza conditions, 2) CpGs within the region 

between -250 and +50 nt were the most sensitive to loss of DNMT1, 3) the fragment 

between +70 and + 700 included CpGs that were sensitive to 5daza treatment, and 4) CpGs 

between 750 and 1000 nt were moderately sensitive to the reduction of DNMT1 in PM 

cells, but were not affected by further DNA methyltransferase inhibition with 5daza 

treatment after 24 hrs.  The factors determining the difference in sensitivity of individual 

clusters of CpGs within this promoter region remain unclear.   However, since the level of 

P1 activity did not increase in PM cells after 24 hours of treatment with 5daza it appeared 

that the methylation status of the CpG residues between +70 and +750 nts was not 

involved in determining the transcriptional activity of this promoter.  These data stress the 

importance of the CpG residues at the -250 nt and +50 nt positions in the transcriptional 

regulation of P1.  

 The effects of 5-daza treatment on P1 transcriptional activity and CpG methylation 

was also assessed in P cells (Figure 3-12 and 3-11).  These data were very surprising.  The 
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level of P1-specific fpgs cDNA increased approximately 20-fold and more than 100-fold 

following 24 and 48 hours of treatment, respectively (Figure 3-11).  Relative to the P1 

activity measured in PM cells under the same conditions, the level found in P cells was 3-

fold and 10-fold greater than the amount of P1-specific fpgs cDNA detected in PM cells 

following 24 and 48 hours of treatment with 5daza, respectively (Figures 3-10 and 3-11).   

 Bisulfite sequencing of genomic DNA from P cells treated with 5daza for 24 hours 

revealed loss of methlaltion at individual CpGs (figure 3-12, open circles).  Remarkably, 

the CpG residue at the +50 nt and between +300 nt and +550 nt positions relative to the P1 

transcriptional start site appeared the most sensitive to DNA methyltransferase inhibition 

(Figure 3-12).  In contrast, the genomic regions upstream of -250 nt and downstream of 

+750 nt remained almost 100% methylated (Figure 3-12).  Because the increment in P1 

activity is substantial in P cells after treatment with 5daza for 48 hours we are very 

interested in determining if this change in expression correlates with loss of DNA 

methylation throughout the P1 promoter under these conditions.   

 

Measurment of DNMT3a and 3b levels in P and PM cells 

 The level of DNA methylation remaining in PM cells was substantial (Figure 3-7), 

and even after treatment with 5daza for 24 hours methylation levels remained (Figure 3-

12).  It is very likely that following 48 hours of treatment with 5daza, DNA methylation is 

reduced across the P1 promoter in PM cells, since transcription originating at this promoter 

increased at this time point (Figure 3-10).  However, we were not convinced that the low 

levels of DNMT1 present in PM cells would be sufficient to maintain the abundant levels 
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of DNA methylation detected at P1 in these cells.  We proposed that perhaps either 

DNMT3a or DNMT3b were coordinating the methylation of CpG dincucleotides within 

the P1 promoter.  Cedar’s group drew the conclusion that in these MEFs the levels of 

DNMT3a and 3b were likely to be quite low, since these enzymes are expressed in ES cells 

and their major function is de novo methylation during embryonic development (177).  We 

designed primers to measure the expression levels of DNMT3a and DNMT3b in P and PM 

cells (Figure 3-13 A).  The difference between the cDNA levels encoding DNMT3a and 

DNMT3b between P and PM cells was remarkable.  DNMT3a expression was up regulated 

approximately 9-fold in the hypomethylated PM cell line (Figure 3-13).  Similarly, 

DNMT3b levels were 4-fold higher in PM cells than the levels detected in P cells.  

Western blot analysis performed in collaboration with Erica Peterson, a member of Dr. 

Taylor’s laboratory, confirmed that the amount of DNMT3a and DNMT3b protein levels 

in PM cells were substantially greater than the levels found in P cells (Figure 3-13 B).   

Interestingly, DNMT1, DNMT3a, and DNMT3b were all sensitive to 24-hour treatment 

with 1µM 5-daza, however DNMT3a appeared less sensitive than DNMT1 in PM cells 

(Figure 3-13 B and C).  These data suggest that DNMTs 1, 3a, or 3b are potential 

candidates for the regulation of DNA methylation across the P1 promoter in PM cells.  We 

know that the activity of DNMT 3a and 3b in PM cells is not able to compensate for the 

loss of DNMT1 globally, since genome-wide DNA methylation analysis has found these 

cells to be severely hypomethylated (137).  However, it may be the case that DNMT3a or 

3b activity sustains methylation of P1 in PM cells.  It should also be noted that the level of 

DNMT3a in P cells is remarkably high, considering MEFs were not predicted to have any 
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detectable levels of de novo methyltransferases.  Perhaps DNMT3a is responsible for the 

methylation of P1 in both P and PM cells, suggesting a new role for de novo 

methyltransferases in the methylation of tissue-specific promoters.  

 
DISCUSSION 

 The results presented in chapter 2 suggested that epigenetic and transcriptional 

interference mechanisms were involved in coordinating the use of the two promoters.  We 

sought to determine if these epigenetic factors are causative or consequential of the tissue-

specific control of the mouse fpgs gene.  In order to approach this question, we used a 

model system that caused a primary disturbance in DNA methylation at P1, and a P1-

promoter knock, in which transcriptional interference at P2 was impossible and in which 

cross-talk between histone modifications and promoter activity could be tested. The 

patterns of DNA methylation at the P1 promoter are more complicated than we previously 

thought, but our data suggest that CpG methylation facilitates transcriptional silencing of 

the P1 promoter.  Likewise, our studies supported transcriptional interference/occlusion at 

P2 in mouse liver, but also indicated other mechanisms enforcing tissue-specific restriction 

of P2 expression in liver.    
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Studies using the P1-knock-out mouse model 

Tissue-specific patterns of histone marks are not simply a consequence of 

transcriptional activity.   

 Studies in yeast have best shown the functional consequences of individual histone 

PTMs in transcription (38, 128), but classifying histone PTMs as either causative or 

consequential of a particular transcriptional state at mammalian genes in vivo have been 

difficult.  In the studies presented in this chapter, we used the P1 knock-out mouse model 

to determine if the distinct patterns of histone PTMs observed between mouse liver, brain, 

and L1210 cells were the consequence of P1 transcriptional activity in mouse liver.  The 

levels of histone H3 acetylation across the fpgs gene in P1 knock-out liver were much 

lower than those detected in wild-type mouse liver, but the profiles described between the 

two genetically different tissues were remarkably similar (Figure 3-3). Furthermore, the 

pattern of histone H3 acetylation at the fpgs locus in knock-out liver was surprisingly 

different then those determined in L1210 cells and mouse brain, in spite of the fact that P1 

activity was absent in all three of these tissues.  Hence, it appeared that additional tissue-

specific mechanisms were driving the positioning of histone acetylation across the coding 

region of the fpgs gene, and that transcriptional activity at P1 served to enhance the histone 

acetylation at those pre-determined positions. Our data suggests that histone marks across a 

tissue-specific gene are more than simply a consequence of transcriptional activity and 

support a functional role for these epigenetic modifications in the control of tissue-specific 

expression.  Support for this concept has recently been furnished in studies mapping 

chromatin marks across enhancer and insulator elements at high resolution in several 
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human cell lines (102).  These studies showed that insulator elements share similar 

epigenetic marks between different cell-types, but the chromatin signatures found across 

enhancer elements are often unique to a specific cellular background. Enhancers are cis 

acting elements that, when bound by sequence-specific DNA binding proteins can impact 

transcriptional activity from long range distances (>10 kb) and when positioned either 

upstream or downstream of the targeted promoter (26).  We consider that enhancer 

elements present within the fpgs gene may be responsible for dictating the pattern of 

acetylated nucleosomes and perhaps tissue-specific expression at the fpgs gene in mouse 

liver.  

 The enrichment of histone H3 lysine 4 tri-methylation at regional nucleosomes has 

been clearly linked to the presence of RNAPII at the 5’ end of genes in an active or poised 

state (13, 87).  The abundant peak of H3K4me3 detected in wild-type mouse liver adjacent 

to P1 was absent in P1 knock-out mouse liver, presumably due to the lack of 

transcriptional initiation occurring at this region (Figure 3-2).  However, we detected a 

substantial enrichment of H3K4me3 approximately 4 kb downstream of the +1 

transcriptional start site of the P1 promoter in knock-out mouse liver.  This peak was not 

detected in other tissues where P1 activity was also absent, i.e. L1210 cells and mouse 

brain.  We took this to suggest that the genomic region 4 kb downstream of P1 in knock-

out liver is permissive to RNAPII binding, and may represent a cryptic promoter that has 

previously not been identified.  This occurrence may very well be related to the histone 

acetylation present at the fpgs gene in knock-out liver.  Histone acetylation enhances the 

availability of cis DNA-binding elements to cellular trans factors (249).  As such, in the 
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absence of P1 activity, the level of histone acetylation across the fpgs gene in mouse liver 

may be sufficient to permit binding of RNAPII at the +4 kb position.  

 

Promoter occlusion at the P2 promoter of the mouse fpgs gene 

We used the P1 knock-out mouse model to determine if transcriptional interference 

was involved in selecting the production of one FPGS isoform over another in mouse liver.  

Knock-out of P1 activity did indeed result in an increase in the transcriptional activation of 

the P2 promoter, confirming our previous conclusions in studies using wild-type mouse 

liver. In our laboratory, Lin-Ying Xie estimated that the increase in P2 activity in knock-

out liver ranged between 4 to 6-fold when compared with levels of P2 expression found in 

wild-type liver (263). Removal of P1 activity was coincident with an increase in the 

binding of the transcription factor Sp1 to the P2 promoter in liver, supporting the idea that 

transcriptional initiation at the P2 promoter in wild-type tissue was blocked as a 

consequence of high levels of transcriptional activity originating at the P1 promoter 

(Figure 3-3).  Interestingly, the expression of P2 in mouse kidney, a tissue that also uses 

P1, increased only approximately 1.5-fold in P1 knock-out tissue.  We took this to suggest 

that the degree of transcriptional interference at P2 in mouse kidney was less than that 

occurring in mouse liver.  This finding may be explained by previous data from RPAs, 

which showed that the amount of transcript generated from P1 was lower in kidney than in 

liver (Figure 2-2); this decrease in P1 activity in kidney was coincident with a higher level 

of detectable P2 expression in this tissue compared to liver (244).  Taken together, it 

appears that the degree of transcriptional interference at P2 reflects the level of P1 
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transcriptional activity.  It would be very interesting to determine if elongating RNAPII 

complexes accumulate over the P2 promoter in mouse kidney as they do in mouse liver. 

Overall, our studies using the P1-knock mouse liver concluded that a mechanism of 

promoter occlusion was limiting the P2 activity in wild-type mouse liver.  This is one of 

the first proven cases where promoter occlusion was shown to control promoter usage of a 

mammalian gene in vivo.  

 

Multiple control mechanisms of the P2 promoter 

 The P2 promoter represents a unique case where a CpG-island promoter is not 

broadly expressed, as is often the situation, since CpG-island promoters are often found at 

the 5’-ends of housekeeping genes.  We proposed that P2 in mouse liver was controlled by 

transcriptional interference, however relief from transcriptional interference increased 

transcription at P2 only 4-6 fold, but was still 30-50 times lower than the level of P2 

expression measured in dividing cells.  Why is the P2 promoter not fully activated in 

knock-out mouse liver? One possibility is that the level of trans factors present in dividing 

cells causes robust transcriptional activation of the P2 promoter necessary to accommodate 

high levels of cellular proliferation.  Perhaps enhancer elements along the length of the 

fpgs gene are differentially used to generate the dividing-cell specific levels of fpgs 

expression, as suggested by the genome-wide studies discussed previously (102).  It may 

also be the case that repressive mechanisms, in addition to transcriptional interference, are 

restricting P2 expression in mouse liver.  However, the fact that we detected HNF4 at P2 in 

mouse liver argues that transcriptional activation, rather than repression is the favored 
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transcriptional state of this promoter in mouse liver.  HNF4 is also expressed in mouse 

kidney, and we believe that the redundant tissue-specific factors between liver and kidney 

may explain why measurable levels of P2 activity are detected in these tissues, compared 

to other differentiated tissues, such as mouse brain, where no fpgs transcripts are found 

(244).   

 In mouse brain, the P2 promoter was found to be poised for transcriptional 

activation (Figure 2-24), representing an additional mechanism of transcriptional 

regulation of this promoter.  We are interested in determining if the poised state of the P2 

promoter exists across multiple mouse tissues where P2 is silent.  Genome-wide studies in 

human and mouse samples have shown that poised RNAPII complexes are common to a 

large number of genes and P2 appears representative of this class of promoters (13, 87).   

 A comprehension of the multitude of transcriptional mechanisms coordinating the 

expression of the P2 promoter of the mouse fpgs gene is critical to our understanding of the 

regulation of the human fpgs locus.  In human tissue, fpgs mRNA is expressed in heart, 

liver, lung, and skeletal muscle (71, 244).   Surprisingly, human fpgs mRNA is generated 

from the sole use of the P2 promoter (244).  Since the effectiveness of antifolate-based 

chemotherapeutic regimens depend on the presence of FPGS protein in sensitive tumor 

cells, an awareness of the transcriptional mechanisms involved in coordinating the 

expression patterns of the P2 promoter in mouse tissues, might have important clinical 

implications.  
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DNA methylation studies 

 The studies described in this chapter using the P and PM cell lines were designed to 

ask the question: Is loss of DNA methylation sufficient to transcriptionally activate the P1 

promoter in mouse dividing cells?  Previous work demonstrated that methylated CpG 

dinucleotides were severely depleted in PM cells due to a substantial reduction of DNMT1 

protein levels (137).  Our interpretation of the results we obtained with these cells was 

complicated by the fact that the PM cells were not a simple case of a hypomethylated cell 

line existing in culture, as had previously been thought.  However, we have made some 

surprising and interesting observations regarding the epigenetic control of the P1 promoter 

and the transcriptional regulation of the levels of DNMT3a and DNMT3b.   

 

Mechanisms controlling the P1 promoter: epigenetics and tissue-specific factors 

 We tested the consequences of changes in epigenetic mechanisms on the activity of 

the P1 promoter using a PM MEF cell line and through the use of pharmacological agents, 

which lead to alterations of the cellular levels of DNA methylation and histone acteylation.  

The substantial increase in P1 transcriptional activity following 48 hours of treatment with 

5daza in both P and PM cells suggest that loss of DNA methylation is sufficient for 

transcriptional activation of the P1 promoter.  However, the levels of P1 activity detected 

in the treated P cells are at least three orders of magnitude lower than the levels found in 

mouse liver, suggesting that other mechanisms are involved in regulating this promoter.  In 

support of this idea, recent experiments have determined that HNF4 is present at the P1 

promoter in mouse liver.  One possibility is that loss of DNA methylation permits basal 
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activation of the P1 promoter, but tissue-specific activators are required to achieve the 

levels of transcription measured in the liver.  Whether loss of DNA methylation is required 

in order for trans factors to affect the transcriptional  activity of P1 is a very interesting 

question and is currently being explored. 

 

How are the methylation patterns across the P1 promoter established? 

 The data presented in this chapter stress that we are far from understanding the 

entire story linking DNA methylation and tissue-specific gene expression.  The manner in 

which the pattern of DNA methylation across P1 is altered with loss of DNMT1 is 

remarkable: individual CpGs appear to lose methyl groups at dramatically different rates 

throughout the entire genomic region sampled in our bisulfite analysis.  These data suggest 

that the mechanisms responsible for DNA methylation across the P1 promoter are 

multifaceted and methylation of individual CpGs within the same genomic region may be 

controlled differently.  To the best of our knowledge, reduced levels of DNMT1 have been 

shown to cause loss of DNA methylation within CpG-rich promoter regions in a uniform 

fashion (60, 194), making the P1 promoter an interesting exception to this general rule.   

We do not yet understand how these patterns are established or their functional 

consequences, but our data argues that the rules dictating DNA methylation at CpG-rich 

promoters may be different than those of CpG-sparse promoters.   

 In PM cells, CpGs adjacent to the transcriptional start site of the P1 promoter are 

severely hypomethylated, yet the rest of the region retains high levels of methylation.  One 

explanation for this pattern is that the remaining DNMT1 enzyme activity in PM cells 
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maintains the methylation of most of the P1 region, but is not able to methylate the sites 

adjacent to the transcriptional start site.  However, DNMT1 has been shown to methylate a 

hemi-methylated substrate in vitro in a processive manner, arguing that partial methylation 

of CpG residues within a region of genomic DNA is unlikely mediated by this enzyme 

(250).    

 Alternatively, loss of methylation observed in PM cells at P1 may be a 

consequence of the hypomethylated state of these cells.  The global levels of gene 

expression are altered in these cells and the pattern of methylation observed may be the 

result of a block in methylation caused by trans-acting factors binding.  In this model, the 

transcription factor is expressed in PM cells but not P cells.    Prevention of DNA 

methylation through transcription factor binding has previously been described (97, 235).   

 Treatment of PM cells with 5daza caused further loss of DNA methylation across 

the P1 promoter region.  However, the effects of 5daza are not specific to DNMT1 and the 

levels of DNMT3a and DNMT3b were also affected by treatment with this agent.  As such, 

the change in methylation observed in PM cells after 24-hour treatment with 5daza may be 

a consequence of the loss of DNMT 1, 3a, 3b, or a combination of the proteins.  

 When P cells were treated with 5daza for 24-hours, expression of P1 was increased 

and loss of methylation was observed in a pattern highly specific to individual CpG 

dinucleotides, similar to the profile found in PM cells.  Subsequently, treatment for 48 

hours resulted in a substantial increase in P1 expression that was higher than the levels 

observed in PM cells treated with 5daza.  The difference in P1 expression between P and 

PM cells following 5daza treatment was suprising, since we expected that P1 might be 
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more sensitive to loss of DNMT1 levels in PM cells, where this protein had already been 

severely diminished.  We have not yet explained this discrepancy, but we are strongly 

considering that alternate DNMT enzymes are involved in regulating the methylation 

across the P1 promoter.  This is a divergent concept from the current thought that DNMT1 

is the sole enzyme responsible for maintaining DNA methylation in differentiated cells or 

tissues.   

 

Are DNMT3 protein levels regulated by DNA methylation or cellular levels of DNMT1? 

 The expression of the genes encoding the de novo methyltransferase enzymes, 

DNMT3a and DNMT3b, occurs most abundantly at early stages of embryonic 

development in the mouse (177).  In the characterization of the PM cell line, Cedar et. al 

reported that the contribution of the de novo enzymes to genome-wide methylation in these 

cells were likely to be minimal.  However, we detected higher levels of DNMT3a and 

DNMT3b at both the transcript and protein levels in PM cells when compared to P cells, 

suggesting that these genes may be regulated by DNA methylation or cellular levels of 

DNMT1.  Additional reports have found that one of the two promoters within the DNMT3a 

locus is hypomethylated in HCT116 cells that are DNMT1 hypomorphs; however, the 

levels of DNMT3a transcript or protein were not measured (60).  The coordination of 

DNMT expression through DNA methylation has previously been described at the 

DNMT3L locus, where methyl groups deposited by DNMT3a and DNMT3b activity led to 

the silencing of this gene (108).  Whether the de novo enzymes DNMT3a and DNMT3b 

are regulated by mechanisms linked to cellular DNMT1 levels is not known.  An 
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appreciation for how these enzymes are over-expressed in PM cells may shed light on this 

potentially important connection.  

 

Are de novo methyltransferase enzymes responsible for methylation of P1? 

 The over expression of the de novo methyltransferase in PM cells may be 

responsible for maintaining the methylation levels observed across P1 in our studies.  

DNMT1 knock-out animal studies have clearly shown that the de novo enzymes are not 

compensatory for loss of DNMT1 on a genome-wide level (142), but a subset of genes 

may remain silenced in DNMT1 hypomorphs due to the activity of DNMT3a or DNMT3b 

that has not previously been identified.  Interestingly, reasonable levels of DNMT3a but 

not DNMT3b were also found in P cells.  This is in agreement with previous literature that 

showed the full-length form of DNMT3a at low levels in somatic tissue, but not DNMT3b 

(177).  Is it possible that one of the de novo methyltransferases may be responsible for the 

methylation of P1 in PM cells and perhaps also P cells?  Literature precedent suggests that 

DNMT3a may be a candidate enzyme regulating P1 methylation: 1) DNMT3a, but not 

DNMT3b, is detected in P cells and is also found at low levels in normal somatic tissues 

(177).  2) DNMT3b catalyzes the addition of methyl groups through a processive 

mechanism, similar to DNMT1, and loss of this protein is unlikely to cause the discrete 

hypomethylation of individual CpGs (82).  And, 3) Dnmt3a has been shown to methylate 

DNA substrates in vitro in a distributive manner, resulting in products that are methylated 

in a non-uniform fashion.  This has lead to the proposal that DNMT3a may require 

targeting to individual CpG sites (103).  Perhaps a distributive enzyme would be more 
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easily used for the methylation of CpG-sparse promoters, but the processive DNMT1 for a 

CpG island promoter.  As such, reduction of this protein may impact individual CpGs 

within a small genomic region differently.  In vitro data also supports the idea that 

cooperation between the DNMTs may function to methylate the CpG-sparse promoter of 

the fpgs gene (67).  An appreciation for how the DNA methylation patterns are established 

at the P1 promoter in P and PM cell lines is important to our understanding of the 

happenings at this promoter in vivo.   

 A class of promoters exists in both humans and mice that is methylated in a tissue-

specific fashion, which inversely correlates with transcriptional activity.  An awareness of 

how these differentially methylated regions are established is central to our ability to test 

their functional importance.  We initiated these studies in the P and PM cells thinking that 

changes in DNMT1 would allow us to determine the contribution of DNA methylation to 

the control of the P1 promoter.  Clearly, we underestimated the complexity of the patterns 

of methylation previously described at P1.  We are eager to determine how DNA 

methylation is coordinated at P1 and if our observations are universal to tissue-specific 

CpG-sparse promoters genome-wide.   

 In this chapter, we used model systems with single genetic disturbances to study 

the impact of changes in P1 activity and DNA methylation on the use of the two mouse 

fpgs promoters.  These studies are preliminary but, in spite of this fact, we have made 

some very interesting observations that require explanations.  Future studies will be 

designed to address some of the remaining questions including: 1) Why is the P2 promoter 

not fully activated in P1 knock-out mouse liver? 2) What mechanism is determining the 
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tissue-specific patterns of histone marks found in mouse liver independent of the 

transcriptional activity at P1? 3) Why is P2 able to produce transcript in mouse liver and 

kidney, but not brain? 4) How are different methylation patterns of P1 established in adult 

mouse tissues, and why are certain CpGs sensitive to loss of cellular levels of DNMTs? 

And, 5) Are tissue-specific factors involved in the coordination of the P1 promoter and if 

so is loss of DNA methylation required for these trans factors to activate the P1 promoter?   
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Figure 3-1.  Histone H3 acetylation across the mouse fpgs gene in wild-type 
and P1 promoter knock out mouse liver. Chromatin from wild-type (closed 
triangles) and P1 knock out (closed circles) mouse liver was cross-linked, 
sonicated, and immunoprecipitated with an antibody against acetyl-H3K9 
(closed symbols) or non-specific IgG (open symbols).  The content of DNA for 
various segments of the fpgs locus was determined by real-time PCR.  The two 
transcriptional start sites are shown as the cross-hatched bars.   
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Figure 3-2.  Histone H3 lysine 4 tri-methylation across the mouse fpgs gene 
in wild-type and P1 promoter knock out mouse liver. Chromatin from wild-
type (closed triangles) and P1 knock out (closed circles) mouse liver was cross-
linked, sonicated, and immunoprecipitated with an antibody against H3K4me3 
(closed symbols) or non-specific IgG (open symbols).  The content of DNA for 
various segments of the fpgs locus was determined by real-time PCR.  The two 
transcriptional start sites are shown as the cross-hatched bars.   
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Figure 3-3.  Residence of trans factors at positions the P2 promoter in wild-
type and P1 knock out mouse liver. Chromatin from wild-type (black and dark 
grey vertical bars) and P1 knock out (light grey bars) mouse liver was cross-
linked, sonicated, and immunoprecipitated with an antibodies against Sp1 (A), 
HNF4 (B) or non-specific IgG (A and B).  The content of DNA at -200 nt and 
+200 nt relative to the P2 promoter transcriptional start site was determined by 
real-time PCR.   
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B. 

Figure 3-4.  RNAPII occupancy across P2 in wild-type and P1 knock out 
mouse liver. Chromatin from wild-type (A) and P1 knock out (B) mouse liver 
was cross-linked, sonicated, and immunoprecipitated with an antibodies 
against total RNAPII (closed circles), phospho-serine 5 RNAPII (open 
circles), phospho-serine 2 (inverted triangles) or non-specific IgG (open 
triangles).  The DNA content was determined by real-time PCR by amplifying 
six overlapping fragments.  The points were plotted at the midpoint of each 
fragment.     
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Figure 3-5.  Expression of Slpi, Cryaa, and the P2-specific fpgs transcript 
in PM cells relative to levels detected in P cells. RNA was isolated from P 
(black vertical bars) and PM (grey bars) cells.  2.5 µg to 5 µg of RNA was 
converted to cDNA using Superscript III Reverse transcriptase kit.  1 µl of 
cDNA was added to a 25µl PCR reaction.  cDNA content was measured 
using gene-specific primers in real-time PCR.  The level of GAPDH cDNA 
was measured as a reference and the ΔCt method was used to assess the 
amount of gene-specific cDNA in each cell line relative to the amount of 
GAPDH.  In these experiments, the level of Slpi, Cryaa, or P2-specific 
cDNA measured in P cells was normalized to 1.0.   
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Figure 3-6.  P1 transcriptional activity in P and PM cells. RNA was isolated from 
P (black vertical bars) and PM (grey bars) cells.  2.5 µg to 5 µg of RNA was converted 
to cDNA as in Figure 3-5.  1 µl of cDNA was added to a 25µl PCR reaction. (A) 
Semi-quantitative PCR was performed and reactions were terminated at 30, 32, 34, 36, 
and 38 cycles to quantify the level of P1-specific fpgs cDNA in P and PM cells.  The 
primers used to detect this fpgs cDNA were specific for regions in A1b and exon 3.  
PCR reactions using primers specific for GAPDH cDNA were quenched at 8, 10, 12, 
and 14 cycles. (B) P1-specific fpgs cDNA was measured using real-time PCR with 
primers specific for regions within exon A1b.  The level of GAPDH cDNA was 
measured as a reference and the ΔCt method was used to assess the amount of gene-
specific cDNA in each cell line relative to the amount of GAPDH.  
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Figure 3-7.  CpG methylation across the P1 promoter in P and PM 
cells.  Genomic DNA was isolated from P (closed circles) and PM 
(closed triangles) cells.  200-500 ng of genomic DNA underwent bisulfite 
conversion.  The P1 promoter was amplified in four fragments using 
bisulfite specific PCR primers.   The region sampled spanned from -500 
to +1000 nt relative to the P1 transcriptional start site.  PCR products 
were gel-purified, cloned, and the sequences of 7-10 colonies were 
determined for each amplified region. At the position of each CpG 
dinucleotide in the genomic sequence, the percentage of clones 
containing a methylated cytosine is represented in the graph, plotted 
relative to the positions of exons A1a and A1b (cross-hatched vertical 
bars).  
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Figure 3-8.  Histone H3 acetylation and lysine 4 tri-methylation at the two 
promoters of the mouse fpgs gene in P and PM cells. Chromatin from P (A) 
and PM (B) cells was cross-linked, sonicated, and immunoprecipitated with an 
antibodies against H3K9Ac (black bars), H3K4me3 (light grey bars) or non-
specific IgG (dark grey bars).  The midpoint of each amplified region was at +50 
nt and -200 nt relative to the P1 and P2 promoter transcriptional start site, 
respectively.  Real-time PCR determined the DNA content.   
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Figure 3-9. Inhibition of histone deacetylases activates transcription 
at P1 and Slpi in P and PM cells.  Cells were treated with 0.06 µM TSA 
for 12 hours. RNA was isolated from P and PM cells and cDNA was 
synthesized as described in Figure 3-5. The primers used to detect P1-
specific fpgs cDNA were specific for regions within exon A1b.  Semi-
quantitative PCR was also performed (data not shown). The level of 
GAPDH cDNA was measured as a reference and the ΔCt method was 
used to assess the amount of gene-specific cDNA in each cell line 
relative to the amount of GAPDH. 
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Figure 3-10.  P1 transcriptional activity increases in PM cells 
after 24 and 48 hours of treatment with 5daza. RNA was isolated 
from PM cells (black bars) and PM cells treated with 1µM 5daza 
(grey bars) for 24 and 48 hrs. cDNA was generated as described in 
Figure 3-5.  1 µl of cDNA was added to a 25µl PCR reaction. The 
level of P1-specific cDNA at 24 hrs was measured using primers 
specific to regions within exon A1b.  cDNA obtained from the 48 hr 
time point was amplified using a forward primer in exon A1b and a 
reverse primer in exon 6 of the mouse fpgs gene.  Similar results were 
also collected using Semi-quantitative PCR.  The level of GAPDH 
cDNA was measured as a reference and the ΔCt method was used to 
assess the amount of gene-specific cDNA in each condition relative 
to the amount of GAPDH.  
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Figure 3-11.  P1 transcriptional activity increases in P cells at 
after 24 and 48 hours of treatment with 5daza. RNA was isolated 
from P cells (black bars) and P cells treated with 1µM 5daza (grey 
bars) for 24 and 48 hrs. cDNA was generated as described in Figure 
3-7.  1 µl of cDNA was added to a 25µl PCR reaction. The level of 
P1-specific cDNA at 24 hrs was measured using primers specific to 
regions within exon A1b.  cDNA obtained from the 48 hr time point 
was amplified using a forward primer in exon A1b and a reverse 
primer in exon 6 of the mouse fpgs gene.  Similar results were also 
collected using Semi-quantitative PCR.  The level of GAPDH cDNA 
was measured as a reference and the ΔCt method was used to assess 
the amount of gene-specific cDNA in each condition relative to the 
amount of GAPDH.  
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Figure 3-12.  CpG methylation across the P1 promoter in PM and P 
cells treated with 1µM of 5daza for 24 hours.  Bisulfite sequencing 
was carried out as described in Figure 3-6 using genomic DNA isolated 
from P (B) and PM (A) cells treated with 1µM 5daza for 24 hrs. 
Sequences of 6-10 colonies were determined for each amplified region 
across the P1 promoter in P and PM cells. At the position of each CpG 
dinucleotide in the genomic sequence, the percentage of clones 
containing a methylated cytosine is represented in the graph, plotted 
relative to the positions of exons A1a and A1b (vertical bars).  
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Figure 3-13. DNMT3a and DNMT3b are overexpressed in PM cells 
compared to P cells.  (A) RNA was isolated from P and PM cells and 
cDNA was synthesized as described in Figure 3-5. The level of GAPDH 
cDNA was measured as a reference and the ΔCt method was used to 
assess the amount of gene-specific cDNA in each cell line relative to the 
amount of GAPDH. (B and C) Whole cell lysates were prepared using 
2% SDS lysis buffer.  20µg of total protein were run on a 4-15% SDS-
PAGE gel.  Proteins were transferred to Immobilon-P PVDF membrane 
using a sem-dry apparatus.  PVDF membranes were blocked in Blotto 
solution, probed with primary antibody (1:500) overnight, washed with 
TBST, incubated in with secondary antibody for 1hr, and developed 
using Pierce chemiluminescence kit.   
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Chapter 4: Antifolates active against de novo purine synthesis have a marked 

spillover effect on inhibition of mTORC1 and activation of AMPK. 
 
 
 
INTRODUCTION 

 The concept of molecular based therapeutics is founded on the idea that genetic 

alterations between normal and neoplastic cells are distinguishing features, that when 

targeted by chemotherapeutic agents will affect only those cells in a cancerous state.  In 

theory, this drug development strategy should result in the generation of compounds that 

cause substantial regression of tumors, while having little, if any, secondary affects on the 

surrounding normal tissue or normal stem cells.  The cell signaling pathways responsible 

for the coordination of cellular proliferation depend on the effector molecule, the 

mammalian target of rapamycin (mTOR), and are rich in proteins commonly dysregulated 

in human cancers and other proliferative disorders.  As such, mTOR is often found 

unchecked in a number of human pathologies, and a great deal of effort has been directed 

towards generating direct and indirect inhibitors of this protein as strategies for 

molecularly targeted therapeutics.  

 

Cell growth, translation, and mTOR 

 Protein translation is a substantial energy burden to the cell and several signaling 

pathways responding to growth factor stimulation and nutrient availability converge on the 
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mTOR protein and coordinate mTOR activity, to ensure that the energy demands of 

protein synthesis are met by the available cellular resources (149).  mTOR is a 289 kD 

serine/threonine kinase that is a member of the phosphatidylinositol 3-kinase related kinase 

family (PIKK), sharing structural similarity to ATM, ATR, and DNA protein kinase (78).  

The amino-terminal domain of the protein is composed of HEAT repeats, which are 

thought to enhance protein-protein interactions (78).  The remaining portions of mTOR 

include a FAT domain (signature of all PIKK kinases) at the C-terminal end, a FKBP12-

rapamycin-binding domain (FRB), and a kinase domain (78).  In the cell, mTOR exists in 

two large multiprotein complexes, mTORC1 and mTORC2, with functionally distinct 

consequences (Figure 4-1).  mTORC2 is composed of mTOR, mLST8, and rictor (208) 

and its activity has been linked to the phosphorylation of Akt at Ser473 (209) and the 

control of the actin cytoskeleton (116).  The mTORC1 complex is activated in response to 

abundant cellular nutrients and growth factors and stimulates protein translation; this 

complex includes the subunits mTOR, Raptor, and mLST8 (129) and is specifically 

inhibited by rapamycin (see below) (Figure 4-1). Raptor facilitates the positioning of the 

substrates of mTOR to enhance phosphorylation (174).  PRAS40 (Proline-rich AKT 

substrate) has also recently been shown to bind to and inhibit mTORC1 prior to its 

phosphorylation by Akt, which causes the release of PRAS40 from the complex (248). The 

events leading to mTORC1 activation represent an integration of growth factor signaling 

and nutrient availability (149) (Figure 4-1). 
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Downstream effectors of mTORC1:  

 mTORC1 activates translational initiation through the phosphorylation of two key 

downstream targets 4E-binding protein 1 (4EBP1) and the 40S ribosomal protein S6 kinase 

(S6K1) (Figure 4-1) (78). Several residues within 4EBP1 (T37, T45, T70, S65) serve as 

substrates for mTORC1 (78).  The hypophosphorylated form of 4EBP1 prevents the 

assembly of the translation initiation complex through its binding with the elongation 

initiation factor 4 E (eIF4E) when it is positioned at the 5’ cap of mature mRNA (78). 

Activation of mTOR phosphorylates 4EBP1, disrupting its interaction with eIF4E, and 

facilitates the activation of cap-dependent protein translation (78) (Figure 4-1).  eIF4E is an 

important mediator of translation of mRNAs involved in cell cycle progress, angiogenesis, 

and survival such as mRNAs for cyclin D1, Bcl-2, Bcl-xl, and vascular endothelial growth 

factor (VEGF) (151). 

 Under basal, non-stimulated conditions the hypophosphorylated form of S6K1 

interacts with elongation initiation factor 3 (eIF3) (105).  Activation of mTOR leads to the 

phosphorylation of T389 and the dissociation of the two proteins.  The free S6K1 interacts 

with phophoinositide-dependent kinase 1 (PDK1), which phosphorylates S6K1 at T229, 

and fully activates the kinase activity of this protein (149).  The active S6K1 

phosphorylates several targets including insulin receptor substrate-1 (IRS-1), the 40S 

ribosomal subunit S6, eukaryotic initiation factor 4B (eIF4B), and programmed cell death 

4 (PDC4), which is accompanied by the enhancement of translational initiation, ribosome 

biogenesis and cellular proliferation (149).  In particular, the phosphorylation of eIF4B 

stimulates its interaction with eIF3 and recruitment to the translational pre-initiation 
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complex (105).  The translocation of eIF4B to the initiation complex stimulates the RNA 

helicase activity of eIF4A, which enhances the translation of transcripts with 5’ 

untranslated regions with high secondary structure; mRNAs of this nature typically encode 

proteins involved in cell-cycle progression and proliferation (257)(Figure 4-1).   

 
Upstream regulators of mTORC1: 
   
 TSC1/TSC2 complex and Rheb 
 The mTORC1 complex associates with and is directly activated by the GTP-bound 

form of the small G protein, Rheb (152)(Figure 4-1).  The interconversion between a GTP 

and GDP bound state of Rheb is determined by the GTPase (GAP) activity of the upstream 

negative regulator of mTORC1, TSC2 (152)(Figure 4-1).  TSC2 exists in the cell as a 

heterodimer with TSC1 and together these proteins are the primary determinant of the 

cellular activity of mTORC1.  Multiple upstream signaling inputs phosphorylate the 

TSC1/TSC2, dictating the GAP activity of TSC2, and thus mTORC1 (Figure 4-1, see 

below). 

 Activators of mTORC1: 

 A major upstream regulator of mTORC1 activity is the serine/threonine kinase Akt.  

Akt activity is stimulated by growth factors, such as insulin and epidermal growth factor 

(EGF), and by the activity of phosphatidylinositol 3-kinase (PI3K) (Figure 4-1) (48). A 

balance of Akt activity is reached in the cell by the activity of the phosphatase and tensin 

homolog (PTEN), which dephorylates phosphatidylinositol-3,4,5-trisposphate (PIP3), to 

phosphatidylinositol-4,5,-bisphosphate (PIP2), preventing the recruitment of Akt to the 

membrane and activation of the protein by phosphorylation by PDK1 (Figure 4-1).  Akt 
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has several cellular targets that coordinate cell growth and proliferation, one of which is 

TSC2.  The GAP activity of the heterodimer is inactivated by the Akt-mediated 

phosphorylation of three residues, S939, S981, and T1462, within TSC2 (114).  As a 

consequence, Rheb-GTP levels are increased and mTORC1 activity is stimulated.  As 

discussed previously, recent studies have uncovered an additional link between mTORC1 

and Akt through the Akt-mediated phosphorylation of PRAS40 (248).  In normal cells, Akt 

mediated activiation of mTORC1 is tightly controlled by a negative feedback inhibitory 

loop mediated by the kinase activity of S6K1 (246).  S6K1 phosphorylates IRS1 and 

stimulates the degradation of this protein, limiting the activation of Akt through the PI3K 

pathway (Figure 4-1) (93, 98).  As a result, in some instances drug-induced mTORC1 

inhibition has led to the activation of Akt due to the loss of this negative feedback loop 

(57).  There are several additional signaling pathways that stimulate mTORC1 and the 

major players involved are outlined in Figure 4-1.     

 Inhibitors of mTORC1 
 
 Since the downstream targets of mTORC1 lead to the activation of processes 

requiring substantial levels of cellular energy it is no surprise that several mechanisms 

exist to inhibit mTORC1 in cells depleted of energy stores.  Original studies suggested that 

mTOR itself sensed levels of ATP and thus served as a metabolic sensor (52).  However, 

several lines of investigation determined that in a low energy state mTORC1 is inhibited 

through the activation of the AMP-activated protein kinase (AMPK), also known as the 

energy sensor of the cell (36).  AMPK is activated in response to cellular stress, which is 

often signaled by an increase in cellular levels of AMP (96).  One mechanism of AMPK-
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mediated inhibition of mTORC1 is accomplished by phosphorylation of TSC2 on position 

S1345, which activates the GAP activity of this protein and reduces the activation of 

mTORC1 through Rheb-GTP (113, 115).  Recent studies have discovered that AMPK also 

directly targets mTORC1 by phosphorylating the Raptor component of the complex (89).  

This post-translational modification enhances the interaction of Raptor with protein 

binding partner 14-3-3 and decreases overall mTORC1 activity (89).  The importance of 

the AMPK/TSC/mTORC1 axis in maintenance of cellular survival under stress conditions 

has been highlighted in studies where cells deficient in either TSC2 or resistant to AMPK-

mediated phosphorylation underwent rapid induction of apoptosis in response to conditions 

of energy depletion (115).       

 Regulation of AMPK 

 AMPK exists in the cell as a heterotrimeric complex composed of a α-catalytic 

subunit and two regulatory subunits, β and γ.  Each subunit is encoded by at least two 

genes (α1, α2, β1, β2, γ1, γ2, γ3), creating the potential for a large number of AMPK 

isoforms to exist mammal tissues (95).  A number of these isoforms have been identified 

but the functional consequences of the different complexes are not entirely understood. 

The α-subunits are composed of a conserved serine/threonine kinase domain at the N-

terminus and the C-terminal portion facilitates binding to the other two subunits (95).  The 

β subunits complex with α and γ and bind glycogen through the C-terminal domain and 

central domain of the protein, respectively (95). AMP and ATP bind to the γ subunits 

through two bateman domains, regions of protein defined to bind molecules containing 

adenosine, located at the carboxy-terminal end of the protein (95).  
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 LKB1 is the major upstream kinase coordinating activation of AMPK in intact cells 

through the phosphorylation of AMPK at the residue T172 within the α-catalytic subunit 

(100, 220).  Phosphorylation of this residue is a post-translational modification that is 

required for the activation of AMPK (101).  LKB1 functions in a heterotrimeric complex 

as a tumor suppressor and is required for the AMPK-mediated inhibition of mTORC1 

(100, 219, 220).  As such, mouse embryo fibroblasts with mutant LKB1 have elevated 

levels of mTORC1 activity (219).  AMPK activation occurs as a consequence of both 

phosphoryaltion of the α-subunit and the binding of AMP to the  γ-subunit (95).  In vitro 

enzyme assays have determined that AMP binding to the γ-subunit both allosterically 

activates AMPK and prevents dephosphorylation of the catalytic subunit by cellular 

phosphatases, e.g. PP2Cα (95, 204, 231).  Aminoimidazole-4-carboxamide ribonucleotide 

(ZMP) has also been shown to stimulate AMPK activity in a similar manner to AMP, and 

administration of aminoimidazole-4-carboxamide ribonucleoside to cells has been used 

extensively to define the role of AMPK in energy metabolism (49, 231).  A second class of 

upstream kinases of AMPK has been identified, the calmodulin-dependent protin kinases 

(CaMKKs) (94).  However, the CaMKKs are expressed in a highly tissue-restricted 

manner and appear to respond to levels of Ca+2 and not AMP.  This is supported by the 

observation that when Hela cells, deficient in LKB1 but expressing CaMKK, are treated 

with agents that increase cellular AMP levels the phosphorylation of AMPK is not 

enhanced (94).  

     In addition to the affects on mTORC1 activity, AMPK activation is primarily 

responsible for shifting the metabolic focus of the cell from anabolism to catabolism.  As 
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such, glucose uptake, glycolysis, and fatty acid oxidation are all stimulated, while fatty 

acid synthesis, gluconeogenesis, and lipolysis are largely inhibited (94).  Additionally, 

another very important consequence of AMPK activation is the induction of a p53-

dependent metabolic check-point, which results in cells arrested in the G1 phase of the cell 

cycle (124).  This effect appears to be coordinated by the phosphorylation of p53 at serine 

15 and induction of two cyclin-dependent kinase inhibitors, p27 and p21 (124, 145).  

Interestingly, studies in HCT116 cells suggest that a link between LKB1-AMPK and p53 

may be required for the p53-mediated transactivation (268).  These data argue that AMPK 

activation may have substantial impact on the control of rapidly dividing tumor cells, 

independent of its inhibitory effects on mTORC1.  

 
 
The mTOR pathway and disease 

 The upstream and downstream proteins involved in the mTOR pathway are 

common tumor suppressors or oncogenes that are dysregulated in a number of proliferative 

disorders and human cancers.  For the sake of clarity, the proteins and their role in 

transformation have been left out of the discussion above and are presented in Table 4-1.      

 

Consequences of mTOR inhibition in vitro and in vivo  

 Inhibitors of mTOR have been extensively sought as ideal candidates for molecular 

targeted therapeuitic agents because of the common phenotype of mTOR dysregulation 

found in several human cancers.  Rapamycin is the prototypical mTORC1 inhibitor that 

was originally identified as an antifungal agent (25, 217).  This agent is bound 
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intracellularly to the immunophilin, FK506 binding protein-12 (FKBP12), which binds to 

the FKBP12-rapamycin binding (FRB) domain of mTOR, leading to the selective 

inhibition of mTORC1 activity and downstream signaling events, with no apparent effects 

on mTORC2 (78). Currently, rapamycin is clinically used as an immunosuppressant to 

prevent kidney transplant rejection and is being tested for efficacy in the use of treatment 

of graft versus host disease (240).   

 In the early 1980’s, rapamycin was evaluated by the developmental therapeutic 

branch of the national cancer institute and was found to be “a non-cytotoxic agent that had 

cytostatic activity against several human cancers in vitro and in vivo”(63).  However, the 

insoluble nature of rapamycin limited the utility of this compound as an anticancer drug 

and developmental efforts were halted. Over the course of the past fifteen years, second-

generation water-soluble rapamycin analogues, termed rapalogs, have been designed and 

their utility as chemotherapeutic agents explored both in vitro and in vivo (63).  The 

lessons learned from the pre-clinical and clinical studies using direct mTOR inhibitors 

have shed light on the cell signaling pathways linked to mTOR activity and the anticancer 

potential of mTOR inhibitors beyond those directly targeting the enzyme.   

 In vitro experiments have suggested that a variety of tumor types including 

glioblastoma, rhabdomyosarcoma, small cell carcinoma, prostate, and breast may be 

sensitive to mTOR inhibition in vivo (56).  The determinants of a particular cellular 

response as an affect of mTOR inhibition appear to depend largely on the genetic 

background of the treated cell-type (25).  A clear example described where a particular 

genotype predicted the anticancer activity of mTOR inhibition has been shown in studies 
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in mice and human tumors that are deficient in PTEN; the activity of Akt was elevated in 

cells where PTEN was deficient and the growth of cells with this genotype both in vivo and 

in vitro were preferentially blocked by inhibition of mTOR (171, 185, 221).  Similarly, 

unchecked PI3K signaling, either as a result of PTEN loss or dysregulated growth receptor 

activity, has been shown to sensitize breast cancer cells to mTOR inhibition (173).  These 

data argue that screening for PTEN status and aberrant PI3K/Akt signaling, two 

derangements commonly found in human cancers, may identify a subpopulation of patients 

that will respond to treatment based on mTOR-inhibition.  

 The cellular response to rapamycin is largely the result of the hypophosphorylation 

of the two major targets of mTORC1, 4EBP1 and S6K1.  Cells exposed to rapamycin 

display a minor decrease in overall protein translation, however the predominant cellular 

affect is substantial G1 growth arrest (63).  One mechanism involved in coordinating this 

signature block involves the decrease in cellular proteins tightly linked to cell cycle 

progression, e.g. cyclin D1 and c-myc, in response to loss of phosphorylation of S6K and 

4EBP1 and their downstream signaling (56, 76, 99).  This decline in protein levels is 

accompanied by the stabilization of p27, which inhibits the activity of the cyclin-dependent 

kinases 4 and 6 and reinforces the G1/S-phase block (127, 176).  Likewise, the presence of 

p53 and p21 has also been linked to the rapamyacin induced growth affects, and cell lines 

mutant in p53 have been shown to undergo apoptosis, rather than cell-cycle arrest 

following treatment with an mTOR inhibitor (109).  

 Tumor growth suppression has also been shown in a number of cases to be a 

consequence of anti-angiogenesis effects in response to mTOR inhibition. The 
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microenviornment of tumors tends to be hypoxic and tumor survival and metastasis is 

often dependent upon ongoing processes of angiogenesis. Mouse models with endothelial 

cell-specific loss of PTEN have dysfunctional angiogenesis and developing embryos die at 

E 11.5 as a consequence of bleeding and cardiac failure, linking the PTEN/PI3K/mTOR 

pathway to the control of vascular development (91).  The connection between the mTOR 

pathway and angiogenesis is defined by the substantial cross-talk between the two 

processes; mTOR activation induces the expression of HIF1α mRNA that leads to the 

induction of vascular endothelial growth factor (VEGF), a critical regulator of 

angiogenesis (85); likewise, VEGF has been shown to stimulate the P13/AKT/mTOR 

pathway (63, 85).  The consequences of this connection on tumor progression were 

realized when the observation was made that rapamycin treatment inhibited metastatic 

tumor growth and angiogenesis in vivo (85). 

 Several cases have been described where mTOR inhibition has resulted in the 

induction of apoptosis in human cancer cell lines (25), but the causative events are not 

entirely defined.  In spite of this fact, it is very clear that the genetic backgrounds of the 

affected cells play a major role (56).  For example, in cells with mutant p53 the tendency 

towards a G1 arrest following rapamycin treatment is disrupted and apoptosis is initiated 

(109); this p53 mutant-mediated apoptosis is dependent upon expression of 4EBP1 and 

loss of p21 (110).  Additional studies have also correlated null-PTEN status and Akt 

hyperactivity with a predisposition to apoptosis following treatment with rapamyacin (56).  

Further understanding of the signaling events and genetic backgrounds driving cells toward 
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apoptosis are critical to identifying cancer types where single agent therapy with mTOR 

inhibitors will cause tumor regression rather than slowed tumor progression. 

  

Potential of mTOR inhibition in the treatment of human cancers 

 The efficacies of three rapamycin analogs temsirolimus, everolimus, and AP23573 

as single agent therapy in the treatment of a number of different cancer types and several 

proliferative disorders are currently being tested in clinical trials.  Success of the rapalogs 

has been found in the treatment of a variety of lymphomas including refractory mantle-cell 

lymphoma and non-mantle-cell-non Hodgkins lymphoma, as well as, in the control of 

facial angiofibromas and renal angiolypomas, common features of profilerative disorders 

(160).  Recently, mTOR inhibitors were approved by the FDA as first-line therapy for 

poor-prognosis renal cell carcinoma (RCC); phase III clinical trial data showed that the 

number of patients responsive to treatment with tesmirolimus was double that effected by 

treatment interferon, which is the current therapy for RCC (160).  It has been surprising to 

clinicians that rapalogs have not shown clinical activity in a substantial number of the 

tumor types tested.  This may be the result of the dominant cytostatic cellular response to 

mTOR inhibition observed in pre-clinical studies, and it may suggest that the use of these 

compounds may be best in combination with cyotoxic agents.  Pre-clinical studies have 

shown potential for mTOR inhibitors in combination with radiation (CR) and clinical trials 

are currently underway to test their utility in a variety of different clinical diseases (160).  

The full clinical benefit of mTOR inhibitors has yet to be determined, but current data 

suggests that the responsive tumor types may define certain genetic features, including 
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PTEN loss and cyclin D1 overexpression, as predictors of sensitivity to mTOR inhibition 

(160).  Thus, the anticancer potential of mTOR inhibitors identified in pre-clinical studies 

appears to hold true for certain cancers with specific genetic disruptions.  

 

Antifolates targeting de novo purine synthesis 

 As discussed in chapter 1, drug development efforts to identify highly selective 

inhibitors of folate metabolism lead to the synthesis of the two diasteromers 6R- and 6S- 5, 

10-dideaza-5,6,7,8-thetraydrofolate (DDATHF) (237)(Figure 1-4).  These compounds 

were determined to inhibit the first-folate dependent step of de novo purine synthesis, 

glycinamide ribonucleotide formyltransferase (GART) (18, 165)(Figure 1-3).  DDATHF 

was found to be an excellent substrate for FPGS (18) and polyglutamated form targeted 

GART much more efficiently than the parent compound (205).  Mouse leukemic cells 

treated with DDATHF were growth inhibited and the ATP and GTP levels within these 

cells were substantially reduced (18); these effects were completely reversed by the 

addition of a purine source, such as hypoxanthine, to the medium (18).  Further studies, 

determined that the effects of DDATHF on de novo purine synthesis caused substantial 

cytotoxicity on human colorectal carcinoma cells exposed to drug (226).  In spite of the 

potential suggested through pre-clinical data of DDATHF as an anticancer drug, the 

clinical utility of this compound was limited because it caused severe thrombocytopenia in 

patients during phase I and II clinical trials (191).      

 The Eli Lilly compound, 231514 (pemetrexed) (Figure 1-4), was originally 

designed as a fourth generation de novo purine synthesis inhibitor, was identified as a 
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potent cytotoxic agent and was advanced as clinical candidate following the failure of 

DDATHF in the clinical setting (224, 238). Pemetrexed is the first antifolate drug 

approved by the FDA in the past 20 years for the treatment of cancer and is currently 

approved for first line therapy in combination with cisplatin for non-small cell lung cancer 

and mesothelioma (61, 148, 211).   

 As previously discussed, in vitro experiments determined that the primary target of 

this compound was thymidylate synthase, but also found that the folate-dependent 

enzymes in de novo purine synthesis, GART and to a much lesser extent AICART, were 

inhibited by the drug (224).  These studies concluded that the polyglutamated forms of 

pemetrexed were 50-200 times more potent inhibitors of thymidylate synthase than of 

either GART or AICART (224).  In agreement with this data, the ATP and GTP pools 

found in CEM cells following treatment with pemetrexed were not depleted, as they were 

after treatment with DDATHF (45).  Taken together, these data imply that the inhibition of 

the secondary targets by pemetrexed play a minor role in the cellular effects mediated by 

this compound.  However, pemtrexed has acted as an effective cytotoxic agent towards 

cells that have been confirmed to be resistant to ralitrexed, a pure thymidylate synthase 

inhibitor, supporting the idea that the multiple targets of pemetrexed are involved in 

mediating its cellular effects (45).  It is clear that the mechanism of action of pemetrexed is 

more complicated than antifolate compounds targeting a single folate-dependent enzyme, 

and understanding the cellular consequences has become increasingly important with the 

recent success of this compound in the clinic.  The studies presented in this chapter have 
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discovered that pemetrexed, through its action on de novo purine synthesis, leads to the 

activation of AMPK and the inhibition of mTOR.  

 

Objectives 

 We have designed a series of experiments to determine if a link between antifolate 

therapy and mTOR inhibition exists.   More specifically, we hypothesized that changes in 

nucleotide pools within the cell induced by antifolate compounds inhibiting either of the 

two folate-dependent enzymes in de novo purine synthesis, GART or AICART, result in 

the inhibition of mTORC1 through the activation of AMPK.  To address this question we 

performed cell culture experiments using DDATHF, the prototypical GART inhibitor, and 

a pemetrexed analogue found in our laboratory to primarily inhibit AICART.  

Furthermore, we expanded our findings by including pemetrexed in our experiments and 

determined a new potential mechanism explaining the antitumor activity of this compound 

for lung carcinomas, an unusual activity of antifolates.  As we will demonstrate in this 

chapter, pemetrexed exerts a strong inhibitory effect on mTOR as an indirect effect of 

AICART inhibition.  This is the first time such an effect has been found.   
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MATERIALS AND METHODS 
 

Materials 

 Antibodies were obtained from Cell Signaling Technology (Beverly, MA) and will 

be discussed individually in the sections to follow.  Compound C (P54996-[4-(2-piperidin-

1-yl-etoxy)-phenyl)]-3-pyridin-4-yl-pyrrazolo[1,5-a]pyrimidine) was purchased from 

Sigma-Aldrich.  Starting Block Buffer (37542) was purchased from Pierce.  10x Tris-

glycine transfer buffer was obtained from Bio-rad (161-0734).  Goat anti-rabbit secondary 

antibody was purchased from Thermo-scientific (35560).  SuperSignal West Pico and Est 

Dura Chemiluniescent Substrate Kits were purchased from Pierce. Pemetrexed, 6R-

DDATHF, and Lilly AICART inhibitor (LCA) were obtained from Eli Lilly and Co 

(Indianapolis, IN).  All other culture reagents were from Sigma Aldrich and were of 

highest available quality.    

 

Cell culture 

 CCRF-CEM human lymphoblastic leukemia cells were maintained at a density 

between 105-106 cells/ml in RPMI 1640 medium (Gibco/Invitrogen) supplemented with 

10% dialyzed fetal bovine serum.  HCT116 human colorectal carcinoma cells were grown 

in RPMI 1640 medium (Gibco/Invitrogen) supplemented with 10% dialyzed fetal bovine 

serum.   All cells were grown at 370C in 15% CO2. 
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Drug treatment of HCT116 cells or CEM cells. 

 HCT116 cells were plated at 2.5 x 106 cellsl in 10 mls in 100 mm dish and were to 

allowed cells to adhere to the plate overnight. Ten milliliters of fresh media were added to 

the plates and drug was added simultaneously with the appropriate amount of reversal 

agents.  Pemetrexed, DDATHF, LCA, thymidine, AICA, AICAR, and inosine were 

prepared in PBS and sterilized filtered prior to use.  Hypoxanthine was prepared in 75 mM 

HCl.   Compound C was dissolved in DMSO and diluted into PBS.  The cells were 

exposed to drug for 24 or 48 hours and harvested as described in chapter 3. CEM cells 

were treated at a density of 1 x 105 cells/ml and, during treatment, the media was 

supplemented with 20 mM HEPES and 40 mM MOPS.  Since CEM cells are grown in 

suspension, at the time of harvesting they were pelleted by centrifugation and then washed 

and lysed as described in chapter 3.  

 

Reversal experiments using HCT116 cells. 

 Cells were plated in 12-well plates at a concentration of 2 x 104/ml in 2 ms of 

media.  The cells were incubated overnight to allow cells to become adherent.  The 

following day fresh media was added to the plates with the appropriate amount of drug and 

rescue agents.  The plates were examined every 24 hours microscopically cell morphology 

and death were noted.  After 96-hours of treatment, the supernatant was aspirated and 

morphology washed the wells with 1 ml of 1x PBS.  Each well was trypsinized and the 

cells were pelleted by centrifugation.  The cell pellets were resuspendend in 1 ml of PBS 

and 500 µl of cell suspension was added to 9.5 ml of PBS for counting using the Beckman 
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Coulter Counter.  Each condition was performed in duplicate and the average cell number 

was plotted.  

 

Immunoblot analysis.  

  Cells were lysed in buffer containing 62.5mM Tris, pH 6.5, 5% glycerol, 2% SDS, 

5% 2-mercapothethanol, 50mM NaF, 0.2 mM Na3VO4  and 1x protease inhibitor complete 

mixture (Roche Applied Science).  Protein concentrations were determined using the 

Bradford assay, against a standard of BSA using reagents from Bio-rad laboratories.  Total 

cellular protein CEM cells (40 µg) and HCT116 cells (20 µg) were resolved on 7.5%, 4-

15%, and 15% SDS-polyacrylamide gels and were transferred to an Immobilon-P 

polyvinylidene fluoride membrane (Millipore) using a protocol for wet-transfer in 

Tris/Glycine transfer buffer Biorad. Western blot analysis using some antibodies and 

cellular lysates obtained from CEM cells were challenging, and we found that increasing 

the total level of protein loaded to 40 µg helped in obtaining successful blots.  Prior to 

transfer, the protein gels and PVDF membrane (which was dipped first in methanol) were 

rinsed in water and then soaked in cold 1x transfer buffer prepared using the manufacturer’s 

protocol (Biorad) for 30 minutes. The pre-cast mini-gel transfer apparatus from Biorad was 

used to carry out the wet transfer. The “transfer sandwich” was prepared as follows:  a 

sponge pre-soaked in transfer buffer was placed on the white plate, followed by three pieces 

of whatman paper, the PVDF membrane, the gel, three additional sheets of Whatman, and a 

second sponge.  All items in the sandwich were soaked in transfer buffer prior to assembly.  

The transfer was run at 100 V for 1 hour.  Membranes were blocked with either 5% milk or 
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Starting Block Buffer (Pierce), washed, and probed with antibodies against AMPKα 

(1:1000) (cell signaling, #2532), phospho-AMPKα (T172) (cell signaling, #2531)(1:250), 

4EBP1 (9452) (1:1000), phospho-4EBP1 (T70) (cell signaling, #9455) (1:1000), S6 kinase 

(1:1000) (9202), phospho-S6 kinase (T389) (cell signaling #9205) (1:250 and 1:500), acetyl 

CoA carboxylase (1:1000) (cell signaling #3662), Raptor (cell signaling #24C12) and 

phospho-Raptor (S792) (cell signaling #2083) (1:1000), phospho-acetyl-CoA carboxylase 

(S79) (cell signaling #3661) (1:1000) at 40 C overnight. All antibodies were purchased from 

Cell Signaling.  Washes were carried out as described in chapter 3, but used 0.1% TBST. 

This change usually decreased the background on these blots.  Membranes were incubated 

with goat anti-rabbit secondary antibody with horseradish peroxidase conjugate for 1hr at 

room temperature (Pierce). Chemiluminescence was detected using the SuperSignal West 

Pico and West Dura Chemiluminescent Substrate Kits (Pierce). Washing with these 

antibodies is critical and if upon developing the blots were dirty we repeated washing 3x for 

5 minutes or longer and re-developed.   Below are the conditions we found to work best for 

these antibodies.  Unfortunately, changes in cell lines may result in the need for re-

optimization.  If these do not work, for another cell line, it is suggested than an optimization 

experiment should be performed with several conditions, varying primary and secondary 

concentrations, as well as diluting solutions.  The differences that small changes make in 

the signal obtained from a particular antibody are remarkable.  For optimization of 

antibodies, I always started out with the least sensitive developing agent, i.e. West Pico, and 

then went to more sensitive reagents as needed.  West dura is very strong and diluting it 1:5 

has proven to also be very useful.   
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RESULTS 

 The direct link between mTOR dysregulation and a larger number of human 

cancers has generated a great deal of interest in identifying therapeutic strategies that target 

the mTOR complex either directly or indirectly.  The studies described in this chapter were 

initially designed to test if de novo purine synthesis inhibition by antifolate compounds 

targeting the folate-dependent enzymes, GART or AICART, caused inhibition of the 

mTOR pathway. Treatment of mammalian cells with inhibitors of de novo purine synthesis 

has been shown to cause depletion of ATP and GTP pools and as a result induced rapid 

growth arrest (18).  Previous studies have identified AMPK, a kinase whose activity leads 

to the inhibition of the mTORC1 complex, as a sensor of cellular energy that becomes 

activated when ATP levels decline.  We hypothesized that nucleotide imbalance induced 

by a de novo purine synthesis blockade may lead to the activation of AMPK and inhibition 

of the mTORC1 complex, which would represent a novel and clinically relevant 

consequence of antifolate compounds targeting this biochemical pathway.   

 

Targets of 6R-DDATHF and LCA by end-product reversal experiments. 

 End-product growth-inhibitory reversal experiments have been used in several 

instances to define the folate-dependent enzymes targeted by antifolate compounds.  

Growth rescue by inclusion of thymidine (TdR) or hypoxanthine (Hx) distinguishes 

between antifolates that primarily target thymidylate synthase and de novo purine 

synthesis, respectively. In order to determine whether the first or second folate dependent 

enzyme of de novo purine synthesis, GART or AICART, is affected by drug, the effects of 
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aminoimidazolecarboxamide (AICA) on the growth of cells exposed to drug is assessed.  

AICA is metabolized to the corresponding ribonucleotide, AICAR monophosphate (also 

known as ZMP) by adenine phosphoribosyltransferase (APRT) and, thus, inclusion of 

AICA in growth medium introduces a purine pathway intermediate into the cell that is 

downstream of GART, but upstream of AICART (Figure 4-3).  If GART is inhibited, 

inclusion of AICA in the medium should reverse growth inhibition (18, 165) whereas, if 

AICART is inhibited, no effect on growth would be expected. 

 We were interested in testing the effect of GART and AICART inhibition on the 

mTOR pathway.  Prior studies have shown that the major site of action of 6R-DDATHF is 

the first folate-dependent step in de novo purine synthesis, GART (18, 165).  We had 

several antifolate compounds in house and Dr. Moran performed a series of end-product 

reversal experiments to identify compounds targeting AICART.  In these experiments the 

data generated using 6R-DDATHF represents the results expected of a pure GART 

inhibitor (Figure 4-2). Growth inhibition by 6R-DDATHF was not affected by the addition 

of thymidine to the medium, but was completely reversed by the addition of hypoxanthine 

(Figure 4-2).  Cells treated with 6R-DDATHF supplemented with AICA (320 µM) are 

substantially less growth inhibited than cells grown in drug alone (Figure 4-2), in 

agreement with concept that this compound is a GART inhibitor.  The inclusion of 

thymidine in the medium of cells treated with the compound Lilly AICART inhibitor 

(LCA) did not affect cell growth, but hypoxanthine partially rescued the growth inhibitory 

effect (Figure 4-2). However, the combination treatment of hypoxanthine and thymidine 

completely rescued cells treated with LCA (Figure 4-2).  Taken together, these data 
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suggest that this compound targets primarily de novo purine synthesis and secondarily 

thymidylate synthase.  The addition of AICA with or without thymidine in growth medium 

had no effect on cell growth, identifying AICART as the enzyme targeted by LCA in de 

novo purine synthesis.   

 Recent studies performed by a current student in the laboratory, Scott Rothbart, 

have supported the idea that LCA inhibits AICART by showing that abundant levels of 

ZMP, the substrate of the AICART reaction (Figure 4-3), accumulates to high levels (1-4 

mM) in both CEM and HCT116 cells treated with 1µM of LCA.  The accumulation of 

ZMP behind the AICART block added an additional link between LCA and mTOR 

inhibition outside of the realm of nucleotide depletion; the expansion of cellular ZMP 

pools following treatment with the ribonucleoside analoge of AICA, AICAR, has been 

shown to activate AMPK, resulting in mTORC1 inhibition, and substantial cytotoxic 

effects (49, 88).  ZMP is capable of binding to the  γ-subunit of AMPK similar to AMP, 

which supports the activation of AMPK by enhancing the phosphorylation of T172 within 

the  α-catalytic subunit of the protein (95).  Thus, it appeared that LCA had potential to 

activate AMPK kinase through two mechanisms: depletion of ATP and accumulation of 

ZMP pools within cells. 

 We had in our hands two compounds, 6R-DDATHF and LCA, that targeted the 

first and second-folate dependent steps in de novo purine synthesis, respectively.  We were 

in a unique position to question if treatment with these compounds impacted the mTOR 

pathway and if cellular effects of nucleotide depletion and ZMP accumulation were 
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different.  The steps of de novo purine synthesis blocked by 6R-DDATHF and LCA are 

illustrated in Figure 4-3.   

 

End-product reversal studies of HCT116 cells treated with LCA. 

 In our initial studies we repeated end-product reversal studies with LCA using 

HCT116 cells and the data from these experiments are shown in Figure 4-4.   The growth 

of HCT116 cells was partially inhibited by LCA at a concentration of 10 nM and was 

completely blocked when treated with 100 nM or higher concentrations of drug (Figure 4-

4).  The growth inhibition observed in cells treated with LCA was not affected by the 

addition of thymidine (TdR) (5.6 µM) to the medium, which would be expected to reverse 

the cellular affects attributed to thymidylate synthase inhibition. However, inclusion of 

inosine (IR) (100 µM), a nucleoside source of purines, substantially lessened the level of 

growth inhibition observed when compared to the growth of cells treated with drug alone 

or with TdR (Figure 4-4).  In contrast to the studies performed in CEM cells, the addition 

of both TdR and IR to the medium did not enhance the reversal of growth inhibition by IR 

alone, suggesting that any potential secondary effects of LCA on thymidylate synthase 

were minimal and not contributing to the growth patterns observed of the treated HCT116 

cells (Figure 4-4).  

 

Inhibition of de novo purine synthesis blocks mTOR activation. 

 HCT116 colorectal carcinoma cells were exposed to 6R-DDATHF and LCA to 

question if mTORC1 inhibition was a consequence of the de novo purine synthesis 
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blockade mediated by these compounds.  We studied the activity of mTOR by monitoring 

the phosphorylation status of two primary targets of the mTORC1 complex S6K1 and 

4EBP1 (Figure 4-5).  mTOR-mediated phosphorylation of S6K1 and 4EBP1 results in an 

overall increase in protein translation and cellular growth (148).  A 1µM concentration of 

6R-DDATHF and LCA inhibited mTORC1 activity in HCT116 cells, demonstrated by the 

reduced level of phosphorylation detected in western blot analysis using phospho-specific 

antibodies against T389 of S6K1 and T70 of 4EBP1 (Figure 4-6).  The effect of LCA on 

mTOR appeared to be more substantial than that of 6R-DDATHF, since phosphorylation 

of both S6K1 and 4EBP1 were completely eliminated by the former and only partially 

reduced by the latter treatment (Figure 4-6).  Likewise, the lower migration of total 4EBP1 

found in cells treated with LCA suggested that the phosphorylation of the additional 

mTOR-sensitive residues in this protein may also be more affected by LCA than 6R-

DDATHF (Figure 4-6).  Interestingly, the effect of LCA on mTORC1 activity was also 

more potent than that observed when HCT116 cells were treated with AICAR, a known 

inhibitor of mTOR through the activation of AMPK (49).  

 

mTORC1 inhibition is specific to the effects of 6R-DDATHF and LCA on de novo 

purine synthesis.  

 We tested if the effects of LCA and 6R-DDATHF observed on the mTORC1 

pathway were reversed by the addition of a purine source, such as inosine, to the medium 

containing drug (Figure 4-7); inosine is converted to inosine mono phosphate (IMP) in 

cells through the action of inosine kinase and serves as the substrate for synthesis of 
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adenosine mono-phosphate (AMP) and guanosine mono-phosphate (GMP) (Figure 4-3).  

Since the growth reversal studies showed that LCA inhibited thymidylate synthase as a 

secondary target (Figure 4-2), we also included thymidine in the media of cells treated with 

this compound to separate out any effects of thymidylate synthase on the mTOR pathway 

(Figure 4-7).  The hypophosphorylation of 4EBP1 and S6K1 in response to 6R-DDATHF 

treatment was completely eliminated when cells were grown in the presence of inosine 

(Figure 4-7); likewise LCA-mediated mTORC1 inhibition appeared relieved by the 

presence of purines in the medium (Figure 4-7).  Initially, we took this to suggest that the 

contribution of ZMP accumulation towards the inhibition of mTORC1 in cells treated with 

LCA was minimal, since repletion of nucleotide pools was sufficient to rescue the 

observed effects.  However, studies discussed later in this chapter demonstrated that the 

addition of a purine source to the medium of cells treated with an AICART inhibitor 

prevented the accumulation of ZMP behind the block, most likely as a consequence 

feedback inhibition mediated by AMP, GMP, or IMP on the rate-limiting enzyme in the de 

novo purine synthesis pathway, glutamine PRPP amidotransferase.  Thus, the effects 

observed on mTORC1 activity in cells exposed to LCA were either due to ATP depletion, 

ZMP accumulation, or a combination of the two.  Substantial hypophosphorylation of the 

mTORC1 targets S6K1 and 4EBP1 was retained in cells treated with LCA and thymidine 

(Figure 4-7), suggesting that the effects observed on mTORC1 were specific to de novo 

purine synthesis inhibition. These studies confirmed our hypothesis that a de novo purine 

synthesis block results in mTORC1 inhibition, and suggested that treatment with LCA has 

more potent consequences on mTORC1 activity than 6R-DDATHF. We had yet to 
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determine the mechanism of this cellular affect, but considered the activation of AMPK as 

a likely candidate. 

 

AMPK is activated when de novo purine synthesis is inhibited in HCT116 cells.    

 We assessed if the proposed mechanism of AMPK activation was responsible for 

the inhibition of mTORC1 observed when HCT116 cells were treated with either 6R-

DDATHF or LCA (Figure 4-8)  AMPK activation in these studies was monitored by 

assessing the phosphorylation of the α-subunit at position T172, a requisite post-

translational modification for the induction of the kinase activity of this protein (101).  The 

phosphorylation of AMPK was stimulated when cells were exposed to either 6R-DDATHF 

or LCA for a period of 24-hours (Figure 4-8).  In agreement with the rescue of mTORC1 

activity (Figure 4-7) observed in cells grown in the presence of both inosine and 6R-

DDATHF, cellular levels of phospho-AMPK remained low under these conditions (Figure 

4-8).  Interestingly, this was not the case in cells exposed to LCA and inosine; the 

phosphorylation of AMPK was detected at equal levels in cells grown in medium 

containing LCA with or without the addition of thymidine or inosine (Figure 4-8).  We are 

not yet clear how mTOR activity persists in spite of the fact that AMPK is phosphorylated 

when cells are treated with LCA and inosine, but measurement of AMPK activity under 

these conditions may shed light on this mechanism.      
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mTOR inhibition occurs in cells treated with pemetrexed, a novel consequence of this 

antifolate compound.   

 The impact of treatment with 6R-DDATHF and LCA on the mTOR pathway was 

very interesting to us because of the therapeutic benefits direct inhibitors of mTOR have 

had in the treatment of several human cancer types in clinical trials (160).  The notion that 

antifolate compounds targeting de novo purine synthesis could lead to the inhibition of 

mTOR had not previously been described in the literature, but the clinical implications of 

this observation on the use of this class of antifolates in the treatment of several human 

malignancies was potentially huge.  At this point in our experiments, we focused our 

attention on determining if treatment with pemetrexed, a multi-targeted antifolate, 

currently used as first line therapy for mesothelioma and non-small cell lung cancer caused 

the inhibition of mTOR.  The primary target of this drug is thymidylate synthase, however 

in vitro enzyme assays and cell culture experiments have shown that the secondary target 

of this compound is de novo purine synthesis.  Understanding the potential mechanisms 

responsible for the anti-tumor activity of a drug in widespread clinical use is of obvious 

importance.  

  The studies described in the sections to follow were performed in collaboration 

with two current students in the laboratory, Scott Rothbart and Cortney Heyer.  In our 

initial experiments, we questioned if pemetrexed-mediated inhibition of de novo purine 

synthesis caused activation of AMPK and inhibition of mTORC1, similar to the effects 

mediated by 6R-DDATHF and LCA on this cell-signaling pathway (Figure 4-9). The 

activation of AMPK by pemetrexed and thymidine was assessed in CEM cells after 24 and 
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48 hours of exposure.  The western blot data presented in Figure 4-9 were generated from 

whole cell lysates harvested after 48 hours of treatment.   We monitored the 

phosphorylation of the α-subunit of AMPK as an indication of the kinase activity of this 

protein, but we also used the phosphorylation status of a direct target of AMPK, acetyl-

CoA carboxylase (ACC), as a direct indicator of the activity of AMPK in intact cells (258).  

A 1µM concentration of pemetrexed promoted activation of AMPK as demonstrated by 

both direct phosphorylation at T172 and by an enhanced phosphorylation of ACC at 

residue S79 (Fig. 4-9).  Activation of AMPK is known to cause inhibition of mTOR by 

phosphorylation of TSC2, upstream of mTOR, as well as a direct phosphorylation of the 

Raptor component of the mTORC1 complex (Figure 4-5 and 9) (89, 115).  Accordingly, a 

robust hypophosphorylation of 4EBP1 and S6K1 was seen in pemetrexed-treated CEM 

cells (Fig 4-9), as well as an increase in phosphorylation of S792 of Raptor (Figure 4-9).  

As in our previous experiments using LCA, we observed a lower and broader migration 

pattern of total 4EBP1 in pemetrexed-treated cells, suggesting that phosphorylation status 

of this protein was severely affected by drug treatment (Figure 4-9).    Thymidine was 

included in these experiments to separate the effects of inhibition of thymidylate synthase 

from any effect caused by de novo purine synthesis inhibition.  The effects of pemetrexed 

on activation of AMPK and inhibition of mTOR, as observed by the phosphorylation of 

AMPK and the hypophosphorylation of the downstream targets of mTOR were dose 

dependent starting at concentrations as low as 0.1 µM of pemetrexed (Figure 4-9).  These 

studies determined that treatment with pemetrexed in the presence of thymidine resulted in 

AMPK activation and mTORC1 inhibition.  
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The second target of pemetrexed is the second folate-dependent step in de novo purine 

synthesis, AICART and results in ZMP accumulation.  

 We sought an understanding of the mechanism behind the AMPK activation 

observed and to prove if the mTORC1 inhibition detected was, in fact, a direct 

consequence of AMPK activity.  In order to address these processes we needed to know if 

pemetrexed inhibited GART, and was most likely causing nucleotide depletion, or 

AICART, resulting in accumulation of ZMP levels.  The field was conflicted on this point: 

in vitro enzyme assays suggested that the second target of pemetrexed was GART (224).  

Dr. Moran performed growth inhibition reversal experiments in CEM cells to determine 

whether the second target of pemetrexed was GART or AICART (Figure 4-11). This 

growth inhibition of CEM cells by pemetrexed was not reversed by hypoxanthine (Hx), but 

inclusion of thymidine in the culture medium did reverse the growth inhibitory effects of 

pemetrexed, shifting the concentrations of drug needed to affect growth by about 12-fold, 

as shown for the CEM human leukemia cell line in Figure 4-11.  Inclusion of both 

thymidine and hypoxanthine reversed the effects of pemetrexed at even high 

concentrations (Figure 4-11), in agreement with previous literature (224, 238). The critical 

piece of data in this experiment was that the addition of AICA (320 µM) in the presence of 

thymidine did not reduce the growth inhibitory effects of pemetrexed.  We concluded that 

the secondary target of pemetrexed was not GART, and was most likely AICART.   

 These observations were further expanded when studies performed by Scott 

Rothbart determined that the ZMP pools increased substantially in pemetrexed-treated 

cells, further supporting the idea that an effect of pemetrexed or its metabolites was 
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predominantly on AICART  (Figure 4-11).  If inhibition of GART played a role in the 

secondary effects of pemetrexed, ZMP accumulation would not have been observed 

(Figure 4-11).  To this point, ZMP accumulation did not occur in 6R-DDATHF-treated 

CEM cells (Figure 4-11).  The level of ZMP in pemetrexed treated cells accumulated in a 

dose-dependent fashion and was maximal after 48 hours of treatment, reaching cellular 

levels approximating 1.5 mM.      

 

ZMP accumulates in pemetrexed treated cells correlates with the degree of AMPK 

activation and mTOR inhibition observed in treated cells.   

 We initially considered the possibility that the AMPK activation observed in cells 

treated with pemetrexed and thymidine was a consequence of the depletion of nucleotide 

pools by AICART inhibition.  However, direct measurment of ATP levels in studies 

performed in our laboratory by Scott Rothbard and others by hplc indicated that the levels 

of ATP did not decrease, but actually increased slightly in cells treated with pemetrexed 

(data not shown). In light of these data, it appeared that the activation of AMPK observed 

in the presence of pemetrexed and thymidine was solely linked to the level of ZMP 

accumulation forced by the pemetrexed-induced AICART block.    

 We took advantage of the fact that AICA enters the de novo purine synthesis 

pathway after being converted to ZMP through the activity of APRT (Figure 4-3) to further 

increase the degree of ZMP accumulation found under conditions where the AICART 

enzyme was inhibited by pemetrexed.  The administration of AICA (320 µM) for 48 hours 

caused the levels of ZMP in pemetrexed treated carcinoma cells to rise to concentrations 
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approaching 4 mM, whereas the levels in cells exposed to AICA in the abscense of an 

AICART block were undetectable (data not shown).  We generated whole cell lysates from 

cells treated under these conditions for 48 hours and found that the expansion of the ZMP 

pool observed appeared to enhance the effects of pemetrexed on AMPK activation and 

mTORC1 inhibition (Figure 4-12).  The phosphorylation of the direct targets of AMPK, 

ACC and to a greater extent Raptor, were increased by the addition of AICA to the 

medium containing pemetrexed and thymidine (Figure 4-12).  Likewise, the 

hypophosphorylation of 4EBP1 was markedly reduced in AICA treated cells, as evidenced 

by the low level of protein detected using the phospho-specific antibody generated against 

the T70 residue, and the broader migrating species detected with the pan-4EBP1 antibody 

(Figure 4-12).  Since the hypophosphorylation of S6K1 was substantial in pemetrexed 

treated cells, a further loss of phosphorylation as a consequence of an increase in ZMP 

levels was difficult to detect (Figure 4-12).  These data greatly supported the notion that 

the activation of AMPK and the inhibition of mTORC1 observed in pemetrexed-treated 

CEM cells were directly correlated with the degree of ZMP accumulation behind the 

AICART block.       

 

The effect of pemetrexed on the AMPK-mTOR pathway is prevented when the levels 

of ZMP are forced to remain low.  

 In our studies using 6R-DDATHF and LCA we determined that the addition of 

purines reversed the inhibition of mTORC1 (Figure 4-7).  We questioned if a source of 

preformed purines, such as hypoxanthine, would also reverse the effects of pemetrexed on 
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the AMPK-mTOR pathway (Figure 4-13).  Cells were treated with pemetrexed and 

thymidine with or without hypoxanthine (32 µM) for 48 hours.  The level of 

phosphorylation of ACC and Raptor detected in cells treated with pemetrexed and 

thymidine with the addition of hypoxanthine were not increased above the levels found in 

the control samples treated with thymidine and hypoxanthine only (Figure 4-13), 

indicating that the activation of AMPK induced by pemetrexed was prevented when 

hypoxanthine was present in the medium.  As would be predicted, the abscense of 

detectable AMPK activity was coincident with loss of mTORC1 inhibition (Figure 4-13); 

the hypophosphorylation caused by pemetrexed of S6K1 and 4EBP1 was completely 

prevented by the inclusion of hypoxanthine in the medium (Figure 4-13).  ZMP 

measurements confirmed that the mechanism of this hypoxanthine reversal of the 

secondary target of pemetrexed was most likely due to the prevention of the accumulation 

of ZMP, presumably due to the known feedback effects of an expanded purine pool on 

early steps in purine synthesis (39, 260).   

 

mTOR inhibition observed in pemetrexed specific cells is dependent upon AMPK 

activation.   

 The accumulation of ZMP in pemetrexed-treated cells and the activating effects of 

ZMP on AMPK suggested that the inhibition of mTOR by pemetrexed was mediated by 

ZMP-dependent activation of AMPK.  To determine the intermediacy of activation of 

AMPK in this mechanism, the effects of an inhibitor of AMPK, compound C (20), on the 

pemetrexed-induced mTOR inhibition was studied (Figure 4-14).  The experiment was 
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performed at two concentrations of compound C, 10 µM and 1 µM.  Cell treated with 10 

µM of compound C and pemetrexed were substantially growth arrested, and at this 

concentration compound C appeared to have substantial effects on the mTOR pathway as a 

single agent, as judged by the hyperphosphorylation of S6K1 (Figure 4-14).  When a 1 µM 

dose of compound C was used, secondary effects on cell growth and the mTOR pathway 

were undetectable (Figure 4-14).  As expected, compound C inhibited the enhanced 

AMPK activity in cells treated with pemetrexed and thymidine, as judged by an inhibition 

of the phosphorylation of ACC (Figures 4-14).  The effects of 10 µM and 1 µM compound 

C on AMPK blocked the inhibition of mTOR by pemetrexed, as judged by the 

hyperphosphorylation of S6K1 in the presence of pemetrexed and compound C (Figure 4-

14), a striking contrast to the marked hypophosphorylation of S6K1 caused by pemetrexed.  

Interestingly, the phosphorylation of AMPK in the presence of pemetrexed and compound 

C was greater than that seen with pemetrexed, in spite of the fact that compound C 

diminished the level of ACC phosphorylation; this suggested that compound C was 

blocking the activity of AMPK while allowing phosphorylation of the  α-subunit of 

AMPK.  Overall, we concluded that the effects of pemetrexed on the mTOR signaling 

pathway were caused by the activation of AMPK following the accumulation of ZMP. 

 

DISCUSSION  

 The search for new therapeutic agents useful against cancer has focused on 

molecularly-targeted small molecules. Such strategies have rarely been identified, although 

the Gleevec-sensitive BCR-Abl and Iressa-selective mutations in the EGFR protein are two 
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well-studied cases (55, 182).  One of the most promising approaches seems to be the design 

of therapeutic agents that affect pathways dependent on tumor suppressor genes, whose 

function is often eliminated or dramatically altered during transformation.  The mTOR 

pathway responsible for the balance of energy metabolism, protein and lipid synthesis, and 

growth involves a series of upstream controlling proteins recognized as tumor suppressor 

proteins, including LKB1, PTEN, TSC1 and 2, and others recognized as cellular oncogenes, 

such as AKT and PI3 kinase (48).    

 In the studies presented in this chapter we identified a new action of a select class of 

antifolates that inhibit de novo purine synthesis: inhibition of mTORC1.  Our studies showed 

that a block of either the first or second folate-dependent steps of purine synthesis results in 

an inhibition of mTORC1 that is prevented by supplementation with a purine source or 

inhibition of AMPK activity.  Thus, the effect on mTORC1 observed appears to be a direct 

consequence of AMPK activation in response to changes in purine nucleotide pools 

following the inhibition of the GART or AICART enzymes.  Furthermore, we determined 

that the activation of AMPK under GART and AICART inhibition occurred by seemingly 

different mechanisms.  Previous studies have determined that GART inhibition results in a 

reduction of ATP and GTP levels in CEM leukemic cells (18) and HCT116 cells (Woodard 

and Moran, unpublished data), and we attribute the stimulation of AMPK following 

treatment with 6R-DDATHF, a pure GART inhibitor, to this consequence.  On the other 

hand, AICART inhibition results in the accumulation of its substrate ZMP, which itself is an 

activator of AMPK by mimicking the effect of AMP on the γ-subunit of AMPK (94, 231).  

A rather striking observation was made with the discovery that pemetrexed, a multi-targeted 
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antifolate currently in clinical use for the treatment of mesothelioma and non-small cell lung 

cancer, has as one of its targets mTORC1.  The ramifications of this observation in the clinic 

have yet to be fully determined, but those studies are currently underway.   

 

GART inhibition vs. AICART inhibition 

  We were able to observe the effects of both ATP depletion and ZMP accumulation 

on the AMPK-mTORC1 pathway through the use of GART and AICART inhibitors, 

respectively. Previous studies have determined that ZMP is an allosteric activator of 

AMPK, in a manner similar to AMP, but is substantially (20x) less potent than the adenine 

nucleotide (49).  This supports the idea that an inhibitor causing ATP depletion and a 

change in the AMP:ATP cellular ratios would be a more potent activator of AMPK than 

compounds causing the expansion of ZMP pools. Rather surprisingly, we found that 

mTORC1 inhibition as a consequence of an AICART block appeared more effective than 

that observed following GART inhibition, as evidenced by a more substantial decrease in 

phosphorylation of 4EBP1 and S6K1 under the former conditions (Figure 4-6). We took 

this as an indication that AMPK activation was higher in AICART treated cells.  It was 

possible that treatment with the AICART inhibitor resulted in depletion of ATP levels, and 

that the enhanced activation of AMPK was a consequence of both effects.  However, 

ongoing experiments by Scott Rothbart in this laboratory, as well as a published study 

(45), indicate that ATP pools do not decrease after pemetrexed.  We propose that the levels 

of ZMP detected in cells treated with the AICART inhibitor (2-4 mM) were sufficiently 

high to make any effect of changes in AMP:ATP levels on the activity of AMPK minimal.  
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These data suggest that ZMP pool expansion as a consequence of an AICART block is a 

more effective mechanism of mediating mTORC1 inhibition than ATP depletion by GART 

inhibitors.  

 Our analysis raises the question of whether GART or AICART would be the ideal 

target of a new generation of antifolates specifically selected as indirect inhibitors of 

mTORC1.  While GART inhibitors showed substantial potential as anticancer drugs in pre-

clinical studies, their use in the clinical setting was limited by the complication of severe 

thrombocytopenia in treated patients (191).  This and the other side effects were most 

likely attributable to the multitude of consequences resulting from substantial depletion in 

purine nucleotide pools in normal highly proliferative cells, a common type of problem 

faced when treating patients with non-targeted agents.  In contrast, while secondary effects 

of ZMP have been described on mitochondrial function (88), current thought is that the 

cellular effects of ZMP are mediated predominately through AMPK.  As such, ZMP 

accumulation as a result of an AICART block may represent a method of targeting 

transformed cells that are hypersensitive to mTORC1 inhibition, e.g. cells deficient in 

PTEN, while preserving genetically normal cells.  We propose that new drug development 

efforts towards the design of antifolates inhibitory of mTORC1 will have effects that are 

more selective and specific through a mechanism of action based on ZMP accumulation, 

rather than ATP depletion.  Thus, the screening and selection of novel compounds in this 

class of antifolates should be based on their activity against the AICART enzyme.       
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Does AMPK activation impact the cytotoxicity of de novo purine synthesis inhibitors?  

 Previous studies have determined that antifolates targeting de novo purine synthesis 

have cytotoxic effects, but they appear to be less potent than antifolates targeting 

additional folate-dependent steps, such as thymidylate synthase (226).  GART inhibition in 

human colorectal carcinoma cells was found to be cytotoxic, but the commitment to cell 

death was substantially lower than the cells treated with an inhibitor of thymidylate 

synthase (226).  Interestingly, antifolate GART inhibitors only killed 1.5-2 logs of WiDR 

cells, whereas inhibitors of thymidylate synthase, i.e. raltitrexid, killed down to mutant 

frequencies.  Likewise, these investigators noted that the morphology of the cells under the 

two conditions were remarkably dissimilar, suggesting that the mechanisms driving the 

cytotoxic effects were different (226).  In those same studies, it was found that the 

cytotoxicity induced by methotrexate treatment in was substantially enhanced when 

purines were added to the media, eliminating any affects on purine synthesis (226).  The 

polyglutamated derivatives of methotrexate have been shown to inhibit AICART in 

addition to DHFR, and it appears from these studies that the purine effect was protective to 

the cells grown in drug (4).  Why would purine depletion protect cells from methotrexate?  

The activation of AMPK often results in the induction of autophagy or growth arrest to 

prevent cells from undergoing apoptosis (34, 115, 124).  Authophagy is a process induced 

by nutrient and energy depletion and results in the lysosomal degradation of cellular 

material to promote cell survival in a time of stress (8).  In a recent study, p27, a cyclin-

dependent kinase inhibitor, was shown to promote autophagy in response to nutrient 

withdrawal.  p27 is phosphorylated in an AMPK-dependent manner, which results in the 
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stabilization and accumulation of this protein within the cell (145).  The investigators 

determined that under conditions of energy depletion knockdown of p27 drove cells 

towards an apoptotic state rather than the autophagic state observed in cells under the same 

conditions with wild-type levels of p27 (145). The induction of autophagy in response to 

anticancer agents has been described and how this affects the efficacy of a particular 

therapeutic strategy is currently being explored (8).  It is clear, however that the cellular 

decision to induce growth arrest, autophagy, or apoptosis depends on the activity of several 

proteins within the mTOR pathway, and AMPK has been suggested to be a major player.  

With this in mind, it seems likely that activation of AMPK in response to de novo purine 

synthesis inhibition caused the induction of autophagy in the methotrexate and GART 

inhibited cells.  From these studies, one may predict AICART inhibitors to have more of a 

cytostatic rather than cytotoxic effect on tumor cells.   

 

Compound C effect on AMPK phosphorlyation at T172 

 In the experiments performed using compound C, an AMPK inhibitor (270), we 

made some surprising observations that should be further discussed.  We used this 

inhibitor to test if the effects of pemetrexed on mTORC1 activity were a direct 

consequence of AMPK activity.  The hypophosphorylation of S6K1 and 4EBP1 resulting 

from pemetrexed treatment were prevented when cells were exposed to 1 µM or 10 µM 

compound C.  Likewise, the phosphorylation of ACC, a direct target of AMPK, was also 

prevented by the addition of compound C to the medium, supporting the idea that 

inhibition of AMPK activity by compound C blocked the effect of pemetrexed on the 
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mTOR pathway.  Rather strikingly, in cells exposed to either concentration of compound C 

and pemetrexed a substantial increase in the phosphorylation of AMPK at T172 was 

observed.   How the phosphorylation of AMPK was enhanced while allowing a block of 

AMPK enzyme activity remains unclear.  Recent studies have determined that the binding 

of AMP leads to the accumulation phospho-AMPK within the cell by preventing the 

dephosphorylation of the α-subunit of AMPK by cellular phosphatases (204).  One 

possible explanation for the increase in phospho-AMPK observed after treatment with 

pemetrexed and Compound C is that the AMPK-inhibitor further prevents 

dephosphorylation of the  α-subunit by phosphatases through a conformational change or 

by direct inhibition of the phosphatases themselves.  Interestingly, when cells were treated 

with AICAR and compound C the increase in phospho-AMPK was not observed (data not 

shown).  Since ZMP was responsible for the activation of AMPK in both pemetrexed and 

AICAR treated cells, these observations suggest the affects observed were specific to 

pemetrexed treatment.  

 

AMPK as a drug target 

 We have identified that the class of antifolates targeting de novo purine synthesis 

causes the activation of AMPK.  The positioning of AMPK upstream of several key 

signaling pathways involved in cellular metabolism and proliferation has brought forth the 

idea that AMPK may be a potential drug target for the treatment of diseases such as type II 

diabetes, atherosclerosis, and most recently human cancers (94).  Current data has 

uncovered that the activity of AMPK is central to p53-mediated checkpoints, as well as, 
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the induction of autophagy and apoptosis under conditions of cellular stress (34, 124, 145).  

These affects are both the consequences of the AMPK-mediated inhibition of mTORC1 

and represent additional mechanisms of AMPK that are not necessarily tied to mTOR.   

 The cross-talk between AMPK, mTORC1, and p53 is evident by recent studies 

showing that p53 supports the activation of AMPK and the inhibition of mTORC1 by the 

transactivation of target genes whose products either lead to the enhancement of AMPK 

activaton, i.e. sestrins, or the up-regulation of proteins responsible for reducing mTORC1 

activity, such as PTEN (33, 68, 69).  Likewise, AMPK activity has been shown to induce 

the phosphorylation of p53 at the serine 15 position, a post-translational modification 

required for the induction of p53-mediated growth arrest (124).  These data place the 

AMPK regulator at the center of p53 and mTORC1 mediated cellular events, two factors 

whose dysregulation account for most of the pathologies causing human cancers.  Thus, 

exploring the efficacy of AMPK activation as an anticancer target is of substantial 

importance.    

 The vast number of tumor suppressors and oncogenic proteins (Figure 4-1 and table 

4-1) linked to AMPK predicts that the cellular response and sensitivity to AICART 

inhibition will depend on the genetic background of the tumors exposed to drug.  A direct 

correlation between PTEN deficiency, as well as, PI3K hyperactivity and the cytotoxic 

effects of rapamycin has been described in mouse tumors in vivo and in breast cancer cells 

lines in vitro (171, 173, 185, 221).  As such, we predict that cells with mutations in the 

PTEN/PI3/Akt pathway will be particularly sensitive to treatment with de novo purine 

synthesis inhibitors.  Proliferative disorders often result from loss of function of either 
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LKB1 or TSC1/TSC2 and the morbidities associated with these diseases have been 

reduced when treated with direct mTORC1 inhibitors (48, 160).  It is of interest to test the 

efficacy of AICART inhibitors in the treatment of these pathologies.  Likewise, the link 

between AMPK-mTOR activation and the induction of HIF-1α, in response to hypoxia 

(see introduction) also suggests that AICART inhibitors may have anti-angiogenesis 

properties.  

 The potential for AMPK activation in the treatment of human malignances has 

begun to be addressed both in vitro and in vivo.  The treatment of breast cancer cells with 

metformin, an activator of AMPK by mechanisms that remain unknown, resulted in 

AMPK-dependent growth inhibition (265).  In vivo studies demonstrated that tumor 

development in mice heterozygous for a PTEN deficiency, were affected by LKB1 levels 

and the onset of tumor formation in PTEN +/- mice was delayed when activation of AMPK 

was induced pharmacologically (111).   

 

New targets for the multi-targeted antifolate, pemetrexed 

 Our studies have suggested that a drug currently in clinical use as a 

chemotherapeutic agent may be working through mechanisms linked to AMPK activation.  

Pemetrexed was shown to inhibit the second-folate dependent enzyme in de novo purine 

synthesis, AICART.  The resulting metabolic block causes the accumulation of ZMP 

leading to the activation of AMPK and the inhibition of mTORC1.  The clinical utility of 

pemetrexed has largely been attributed to its effect on thymidylate synthase, but in vitro 

experiments have highlighted the importance of the secondary targets of pemetrexed in 
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mediating its cytotoxic effects (45).  We are very interested in determining the extent of 

how AMPK activation and mTORC1 inhibition has played a role in this compounds 

clinical utility.  Interestingly, the combination of pemetrexed and cisplatin was more 

efficacious in the treatment of non-small cell lung cancer than gemcitabine and cisplatin 

except when patients had squamous cell carcinoma (61). This finding is remarkable and 

investigators have postulated that this observation was a consequence of the over-

expression of thymidylate synthase in squamous cell tumors (61). The studies presented in 

this chapter offer an alternative explanation, whereby the distinction between squamous 

cell carcinoma and the other non-small cell cancers is the status of the mTORC1 pathway.   

 The assessment of the phosphorylation status of 4EBP1 and S6K1 has been used to 

assess mTORC1 inhibition in the clinical trials of direct mTOR inhibitors (160).  

Retrospective analysis of the status of these proteins in tumor samples from patients treated 

with pemetrexed will be useful in understanding if our observations are relevant to the 

clinical setting.  Additionally, pre-clinical and clinical data obtained from studies using 

rapaloges may assist in identifying tumor types likely to be sensitive to treatment with 

pemetrexed.   To this point, current rapalogs have also shown activity against human lung 

cancers in clinical trials (84, 181).  Likewise, Rad001, a direct mTOR inhibitor, has 

recently been approved as first line therapy for the treatment of renal cell carcinoma (160).  

It may very well be the case that the effect of pemetrexed on the AMPK-mTOR pathway 

has been largely responsible for the selective use of this compound in the treatment of 

NSLC.  
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Genetic alterations that lead to proliferative disorders 

Gene Presentation Syndrome Aetiology 
PTEN Hamartomatous 

tumor 
syndromes 

Cowden syndrome 
 

PTEN loss, 
hyperactive PI3K 

TSC1 Hamartomas Tuberous sclerosis 
complex 

TSC1 mutation, 
hyperactive 
mTORC1 

TSC2 Abnormal 
growths in lungs 
(smooth muscle) 

Lymphangio-
leiomyomatosis 

TSC2 mutation, 
hyperactive mTOR 

AMPK Cadiomyopathy Familial hypertrophic 
cardiomyopathy 

Loss of AMPK 

LKB1 Gastrointestinal 
polyps 

Peut-Jeghers syndrome Loss of LKB1 

 
 
 Tumor suppressor/oncogenic proteins involved in cancer 

Gene/protein Genetic alteration Cancer type 
PTEN Deletion, silencing, 

loss of function 
Endometrial, 
glioblastoma, 
hepatocellular 
carcinoma 

PI3K Increased PI3K 
activity 

Endometrial, 
glioblastoma, hepto-
carcinoma, thyroid, 
prostate, lung  

eIF4E Overexpression Breast, squamous 
cell, 
adenocarcinoma 

LKB1 Mutation, silencing Non-small cell lung 
cancer 

Akt Gene amplification, 
overexpression 

Breast, ovarian, 
colon, ovarian, 
breast 

S6K1 Gene amplification Breast, ovarian 

Table 4-2. Common mutations within the mTOR pathway that lead to 
proliferative disorders or cancer.  Adapted from Faivre et. al, vol. 5, pages 671-
688, August 2006, Nature Reviews Drug Discovery. Italicized text represent tumor 
suppressors and bold represent oncogenic proteins.   
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Figure 4-1. mTOR signaling network.  Adapted from Merc-Bernstam 
et. al, Journal of Clinical Oncology, vol. 27, no. 13, May 2009 
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Figure 4-2. End product reversal studies in CEM cell growth treated 
with the de novo purine synthesis inhibitors 6R-DDATHF (A) and 
LCA (B). CEM cells were treated with the indicated concentrations of 6R-
DDATHF (A) and LCA (B) alone (no addition) or in the presence of 
Thymidine (TdR, 5.6 µM), Hypoxanthine (Hx, 32 µM), or a combination 
of TdR with either Hx or AICA (320 µM).  Drug and modifying agents 
were added simultaneously and cells were incubated in media for 96 hours.  
This work was performed by Dr. Richard Moran.      

LCA, µM 

A.   

B.   
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Figure 4-3.  The folate dependent steps of de novo purine synthesis and the 
targets of DDATHF and LCA. De novo purine synthesis consists of ten 
sequential enzymatic reactions starting with 1-phosphoribosyl-5-pyrophosphate 
(PRPP) of which two, GART and AICART, are folate-dependent. The figure 
depicts the substrate of the GART reaction, glycinamide ribonucleotide (GAR), 
and the product of this reaction formylglycinamide ribonucleotide (FGAR), as 
well as the salvage of AICA, AICAR, and hypoxanthine catalyzed by adenine 
phosphoribosyltransferase (APRT), adenosine kinase (AK), and hypoxanthine-
guanine phosphoribosyltransferase (HGPRT), respectively.  Inosine mono-
phosphate (IMP) is converted to AMP and GMP. 
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Figure 4-4. Reversal of HCT116 cell growth inhibition by addition of 
purines   supported the observation that the target of LCA is de novo purine 
synthesis not thymidylate synthase. HCT116 cells were treated with the 
indicated concentrations of LCA alone (no addition, green small circles) or in the 
presence of Thymidine (TdR, 5.6 µM, black squares), Inosine (IR, 100 µM, blue 
triangles), or a combination of TdR and IR (red large circles).  Drug and 
modifying agents were added simultaneously and cells were incubated in media 
for 96 hours.  Cell growth was determined after 96 hours and cell number is 
expressed. 

LCA, µM 
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Figure 4-5. AMPK/TSC/mTORC1 axis studied.  
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Figure 4-6. De novo purine synthesis inhibition causes a decrease in 
phosphorylation of 4EBP1 and S6K1, two major downstream targets of 
mTORC1. Western blots of total and phosphorylated S6K1 and 4EBP1 protein 
levels following treatment with 1 µM of DDATHF or LYLCA.  The molecular 
masses of these bands were 62 kD (AMPK), S6K1 (70 kD), and 15-20 kD 
(4EBP1).  Equal levels of total HCT116 protein (20 µg) was loaded in each lane; 
use of actin as a control demonstrated equal loading between lanes in this and the 
following figures (not shown).  AICAR was used at 320 µM of 1 µM in the 
4EBP1 or S6K1 blot, respectively.   
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Figure 4-7.  Reversal of mTOR inhibition induced in HCT116 cells by 
DDATHF and LCA by the addition of purines. Cellular activity of mTOR 
was assessed by the phosphorylation of S6K1 and 4EBP1 after treatment with 
DDATHF (A) and LYLCA (B).   HCT116 cells were exposed to drug and 
modifying agents for 24 hours and IR was used at 100 µM and TdR was used at 
5.6 µM. 
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Figure 4-8.  mTORC1 inhibition following treatment with de novo purine 
synthesis inhibitors correlates with activation of AMPK by phosphorylation 
at position T172. Phosphorylation of AMPK at the Thr172 position was 
assessed by western blot analysis following treatment of HCT116 cells with 
1µM of DDATHF (A) and LCA (B).  Cells treated with DDATHF were also 
exposed to 100 µM of IR as a rescue agent.   Cells treated with LCA were 
exposed to 5.6 µM of TdR or 5.6µM of TdR and 100 µM of IR.  The 
phosphorylation of AMPK appeared to be reversed using IR in cells treated with  
DDATHF, but not in those exposed to LCA. HCT116 cells were exposed to drug 
and modifying agents for 24 hours as in Fig. 4-6.   
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Figure 4-9.   Effects of pemetrexed on activation of AMPK and inhibition of 
mTOR. (A and B)  Western blot analysis of total and phosphorylated AMPK, 
ACC, Raptor, S6K1, and 4EBP1.  The molecular masses of these bands were 62 
kD (AMPK), 280 kD (ACC), 150 kDa (Raptor), S6K1 (70 kD), and 15-20 kD 
(4EBP1).  Equal levels of total protein (40 µg) was loaded in each lane; use of 
actin as a control demonstrated equal loading between lanes in this and the 
following figures (not shown).  Vehicle was PBS, pemetrexed was used at 1 µM, 
AICAR was at 250 µM, and TdR was 5.6µM; drug exposure was 48 hours. 
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Figure 4-10. Dose-dependent activation of AMPK and inhibition of 
mTOR upon treatment of CEM cells with pemetrexed. AMPK 
activity was assessed by western blot analysis of phosphorylation of ACC 
and Raptor, and the activity of mTOR was indicated by the 
phosphorylation of S6K1 and 4EBP1.   CEM cells were exposed to drug 
at .01 µM, .1 µM, and 1.0 µM with 5.6 µM TdR for 48 hours; conditions 
for western blots were as in Fig. 4-9. 
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Figure 4-11. Reversal of CEM cell growth inhibition by AICA and 
accumulation of cellular levels of ZMP indicated that the second target of 
pemetrexed is AICART, not GART. (A) CEM cells were treated with the 
indicated concentrations of pemetrexed alone (no add) or in the presence of TdR 
(5.6 µM), Hx (32 µM), AICA (320 µM), or a combination of TdR with either Hx 
or AICA.  Drug and modifying agents were added simultaneously and drug-
containing medium was changed at 48 hours.  Cell growth was determined after 
96 hours and cell number is expressed relative to controls without drug.  (B) 
Increased cellular ZMP pools in pemetrexed-treated but not (6R)-DDATHF-
treated CEM cells.  Cells were exposed to drugs for 48 hours, nucleotides 
extracted and ZMP separated by hplc.  This work was performed by Dr. 
Moran (A) and Scott Rothbart (B).  
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Figure 4-12. Expansion of the ZMP pool by AICA enhances the effect 
of pemetrexed on the AMPK-mTOR pathway in CEM cells. AMPK 
activity was assessed by western blot analysis of phosphorylation of ACC 
and Raptor, and the activity of mTOR was indicated by the 
phosphorylation of S6K1 and 4EBP1.   CEM cells were exposed to drug 
and modifying agents for 48 hours as in Fig. 4-9 and AICA was used at 
320 µM; conditions for western blots were as in Fig. 4-9. 
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Figure 4-13. Reversal of secondary effects of pemetrexed on the 
AMPK-mTOR pathway by the addition of purines. Cellular activity 
of AMPK was assessed by western blot analysis of phosphorylation of 
ACC and Raptor, and the activity of mTOR was indicated by the 
phosphorylation of S6K1 and 4EBP1.   CEM cells were exposed to drug 
and modifying agents for 48 hours as in Fig. 4-9 and Hx was used at 32 
µM; conditions for western blots were as in Fig. 4-9. 
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Figure 4-14.  Prevention of the secondary effects of pemetrexed on the 
mTOR pathway by inhibition of AMPK. When CEM cells were exposed to 1 
µM pemetrexed and 5.6 µM thymidine for 48 hours, 10 µM (A) or 1 µM (B) of 
Compound C (CC) in the medium prevented the cellular activity of AMPK by 
pemetrexed without interfering with the phosphorylation of AMPK.  Vehicle (V) 
was DMSO.  
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Chapter 5: Perspectives 
 
 

  
 Throughout the course of this dissertation, I have addressed the epigenetic, 

transcriptional, and cell signaling mechanisms involved in the actions of folate anti-

metabolites.  In chapter 2, I presented evidence that the control of the multi-promoter 

mouse fpgs gene involves epigenetic, transcriptional interference, and promoter-proximal 

pausing mechanisms to coordinate the tissue-specific expression patterns detected in adult 

differentiated tissues and normal and neoplastic proliferative cells.  In chapter 3, I 

perturbed those controls to study the response of the integrated system.  In chapter 4, I 

presented evidence to suggest that antifolates inhibiting the second folate-dependent 

enzyme of de novo purine synthesis, AICART, may represent a class of folate anti-

metabolites that have potential as molecularly targeted therapies in the treatment of human 

cancer. Our studies have lead to several conclusions and generated a number of new 

questions that remain to be answered, as discussed below.         

 

The mouse fpgs gene: a model of tissue-specific transcriptional control mechanisms 

 The field of transcriptional control mechanisms is in a time of great expansion. The 

realization that a relatively small number of eukaryotic genes are controlled to generate the 

vast number of diverse proteins found in mammals has called into question the relevance 
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of basic transcriptional mechanisms once considered to be fundamental. Genome-wide 

technologies have identified the overwhelming prevalence of multi-promoter genes in 

mammals and greatly expanded the fields of microRNAs and epigenetics. During the 

course of this dissertation a major paradigm shift was caused by the discovery that a large 

proportion of mammalian genes are regulated not at the level of transcriptional initiation, 

but at a stage in transcriptional elongation (87).  In this new framework, our studies at the 

mouse fpgs gene have highlighted the importance of several recently identified 

transcriptional processes in tissue-specific patterns of regulation, and the multitude of 

control mechanisms coordinating this gene continues to surprise us.   

 We consider the mouse fpgs gene an excellent model system to expand the 

genome-wide observations regarding tissue-specific and multi-promoter gene regulation to 

a mechanistic understanding of the interplay of these events at a single genetic locus.  The 

work presented in this dissertation and generated from previous members of the laboratory 

have dissected several interesting aspects of this gene, and with our knowledge base we are 

in a unique position to address highly relevant and current topics using an in vivo model 

system.  The areas of interest include tissue-specific patterns of DNA methylation and 

histone post-translational modifications, the mechanisms responsible for establishing 

poised elongation complexes, and the fundamental differences between CpG-sparse and 

CpG-island promoter regulation.   

 To further address these fields at the fpgs gene the next phase of in vivo studies will 

benefit from observations made that suggested that the fpgs gene undergoes promoter 

switching during the course of mouse developmental.  The premise for this hypothesis 
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rests on data presented in Dr. Fiona Turner’s dissertation where she analyzed the use of the 

two fpgs promoters in developing mouse tissues.  Interestingly, in neonatal mouse liver 

fpgs mRNA was detected from both the P2 and P1 promoters (243).  Likewise, following a 

partial hepatectomy, performed to induce hepatocyte cellular division, P2 was also found 

to be active. A separate study determined that detectable levels of FPGS protein were 

found in developing mouse brain, but not in differentiated tissue, which suggested that the 

P2 promoter is active in brain during development but silent in adult animals (12).  Our 

studies have determined the P2 promoter in brain is silenced through a mechanism of 

promoter-proximal pausing. Tracking changes in promoter usage, DNA methylation status, 

and histone post-translational modifications throughout the course of development may 

provide insight into the sequence of events dictating the transcriptional, epigenetic, and 

poised states at the fpgs promoters in differentiated tissues.  The rules defined will most 

likely be applicable to additional tissue-specific multi-promoter genes.  

 Of particular interest is the establishment of DNA methylation patterns at the P1 

promoter in mouse liver.  Is the P1 promoter silent and methylated in developing 

hepatocytes and if so, when is methylation lost? Tremendous insight has been gained 

towards understanding the meaning of certain histone modifications and DNA methylation 

through genome-wide studies using mammalian pluripotent stem cells (159, 161).  

However, patterns of DNA methylation across CpG-sparse promoters are difficult to 

obtain with the current strategies used to analyze genome-wide methylation.  As such, 

monitoring methylation at fpgs P1 during development may be uniquely informative.  

Additionally, the field addressing processes of DNA demethylation is rapidly changing.  
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Current thought suggests that active de-methylation may occur through processes linked to 

nucleotide excision repair (213).  The concept that DNA demethylation may define tissue-

specific patterns of methylation has only been proposed and pursuing studies focused at the 

P1 promoter may shed light on this topic.   

 Literature precedent shows that primary events controlling genes are often defined 

from studies in vitro, but the promoter switching and poising occurring during 

development at the mouse fpgs may allow us to distinguish mechanisms in vivo. 

 

Antifolates as molecularly targeted therapies  

 The use of antifolate drugs as chemotherapeutic agents was initiated in the early 

1940’s and remains first line therapy for several human pathologies including acute 

lymphocytic leukemia, rheumatoid arthritis, and sarcoidosis.  These compounds target 

enzymes involved in nucleotide synthesis and amino acid metabolism and thus have 

proven to be very effective at eliminating highly proliferative tumor cells that depend on 

these reactions for cellular survival. Previously, a place for antifolates in targeted 

chemotherapy had not been realized, but our studies have defined a potential for folate 

antimetabolites in this arena.  AICART inhibitors indirectly target mTOR, a protein central 

to several signaling pathways aberrantly regulated in human cancers.  Thus, these agents 

are akin to direct mTOR inhibitors, which are currently used as immunosuppressant agents 

following kidney transplant and have recently been approved as first-line therapy in the 

treatment of renal cell carcinoma (160, 240). Several questions remain regarding the utility 

of AICART inhibitors as molecularly targeted therapies.  What tumor types will be 
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sensitive to AICART inhibition? How will this class of compounds compare to direct 

mTORC1 inhibitors? Will these compounds be useful in combination with cytotoxic 

agents?   

 We propose that AICART inhibitors will have clinical success in the treatment of 

human cancers in combination therapy.  Direct mTOR inhibitors have shown either 

additive or synergistic anti-tumor activity in combination with paclitaxel, cisplatin, 

doxorubicin, and carboplatin (160).  Pre-clinical studies have suggested that mTOR 

inhibition may be beneficial in circumstances where an aberrant PI3/Akt pathway causes 

tumor resistance to first-line chemotherapeutic strategies.  For example, the cytotoxic 

effects of trastuzumab, a monoclonal antibody blocking the Erb2 tyrosine kinase receptor, 

on breast cancer tumors are eliminated when cellular PTEN levels are lost, resulting in 

high levels of Akt activity (147).  Co-administration of trastuxumab and Rad001, a 

mTORC1 inhibitor, has been shown to increase the sensitivity of resistant breast cancer 

cells to trastuxumab therapy by eliminating the downstream consequence of Akt 

stimulation, mTORC1 activation (147).  

 A clinically relevant consequence of mTORC1 inhibition is the activation of Akt, 

which occurs through the prevention of the feedback inhibition of Akt mediated by S6K1 

activity on IRS-1 (Figure 4-1) (57).  This has been shown to attenuate the anti-tumor 

effects of mTORC1 inhibition.  Pre-clinical studies have shown that the combination of 

direct mTORC1 and IGF-R inhibitors alleviates this unwanted secondary consequence of 

mTORC1 inhibition and enhances antitumor activity (223).  IGF-R and mTOR inhibitors 

are currently being tested in clinical trials (160).  Akt activation will most likely also occur 
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in response to mTORC1 inhibition induced by an AICART block and the combination 

strategies successful with direct mTORC1 inhibitors should be considered when selecting 

agents to combine with this class of antifolates.  

 Beyond the use of AICART inhibitors as anticancer drugs these compounds should 

now be tested in the treatment of non-neoplastic pathologies sensitive to AMPK activation, 

such as type II diabetes, and proliferative disorders caused by loss of tumor suppressors, 

i.e. LKB1, TSC2, and PTEN, that are upstream regulators of mTORC1.  Recent in vivo 

experiments have shown that pharmacological activation of AMPK improves blood 

glucose homeostasis, lipid profiles, and blood pressure in rodent models of type II 

diabetes, supporting a potentially serious role for AMPK activation in the treatment of this 

common metabolic disease (251).  Likewise direct mTORC1 inhibitors in phase I and II 

clinical trials have shown promise in the reduction of angiomyolipomas, facial 

angiolypomas, and lymphangiomyomatosis, which are common consequences of 

proliferative disorders due to TSC1 and TSC2 dysregulation (149, 160).  Clearly, in light 

of our recent data testing the use of antifolates targeting AICART as single agent therapy 

or in combination with direct mTORC1 inhibitors in the treatment of metabolic and 

proliferative disorders will be of great interest.   
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Appendix A 
Primer pairs are listed together 
 
Chapter 2  
 
Primers used across the length of fpgs gene: 5’ to 3’: 
 
Primer 1 forward:     5’TCCCTCCGCAGCTTCCTG3’ 
Primer 1 reverse:    5’ACTGACTTGCCATCTCCCC3’ 
 
Exon A1a 1a2:     5’CTTGATGTCATTTGCAGTCCAA3’ 
Exon A1a 2b:      5’GTTCGCATTTCCATCCTGTG3’ 
 
Primer 3 forward:     5’GACTCAGGGGTGTTGCTCT3’ 
Primer 3 reverse:     5’CAGGTTCAACAAGAGATCGAGAG3’ 
 
Primer 4 forward:     5’GCGTCTTGGGTTAGTGGCAG3’ 
Primer 4 reverse:      5’CCATAAGTCACGTAGGCAATGC3’ 
 
Primer 5 forward:     5’GGTTCAGATGCACTCGCTTG3’ 
Primer 5 reverse:     5’CTGGGCAGTGGTAGCACA3’ 
 
Primer 6 forward:     5’GAGAAAGCCTGTGGCAGG3’ 
Primer 6 reverse:      5’AGGAATACAGTTGTAAGCCAGG3’ 
 
Exon 1 (3a):      5’GCTTCTCTGCCAAGGAGTCG3’ 
Exon 1 (4b):      5’GCCCTGACGCCATCCTAA3’ 
 
Primer 8 forward:              5’GCACAGGTTTCTCAGAATGTAGGG3’ 
Primer 8 reverse:              5’CTCTCTACCACTATACTGGACACC3’ 
 
Primer 9 forward:    5’AGTAGTGGGATTAAAGGCGTGC3’ 
Primer 9 reverse:    5’ ATGGGTACTGCTGGTTGTCG3’ 
 
Primer 10 forward:    5’TGCCAGGGATTAGCTGTGG3’ 
Primer 10 reverse:    5’CTGCCCAGCTTCCATGTCTTTA3’ 
 
Primer 11 forward:    5’GACTGTGGCAAGTCATTACCAGG3’ 
Primer 11 reverse:    5’CACATGAGGAACCCAAAGC3’ 
 
Primer 12 forward:    5’CTACACATCCCAGTGCAGG3’ 
Primer 12 reverse:     5’AGTCCCTGTTCCTCACTGAGC3’ 
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Primer used for Chip walking across P1 and P2: 
 
P1 promoter 
 
Exon A1a  (1a2)    5’CTTGATGTCATTTGCAGTCCAAG3’ 
Exon A1a (1b)     5’ CTGGGAGATGTCCAAGTCCTG3’ 
 
Exon A1a (2a)     5’GTCTCACCTGGGCAGCAAG3’ 
Exon A1a (2b)     5’GTTCGCATTTCCATCCTGTG3’ 
 
Exon A1a (3a)     5’CAGCTAGCTAGCCCTGTAGTGG3’ 
Exon A1a (3b)     5’GGTAGGGCACAAATGACTCCAAG3’ 
 
Exon A1a (4c)     5’TGCAGTCCCAGTCCAGC3’ 
Exon A1a  (4d)    5’AGGCAGTCTTAGCTTCGTAAGC3’ 
 
Exon A1a (5e)     5’GTGGAAGGACCCATCAGGGA3’ 
Exon A1a (5f)     5’AGTAGGGTTCCTAACATCACCTGC3’ 
 
Exon A1a (6a2)    5’GTGTGCCAGTCTGATGCACATTAG3’ 
Exon A1a (6b)     5’GGAATGAGGCGACCTTGACC3’ 
 
P2 promoter 
 
Exon (1c)     5’CGATAGGGGTGTCATTCTTCC3’ 
Exon (1d )     5’GCAGCCTTTTCGGTCAAG3’ 
 
Exon 1 (2a)     5’AGCCTGGAGAGACGGGGT3’ 
Exon 1 (2b)     5’CCAATCCGAGCCAGCAGTTC3’ 
 
Exon 1 (3a)     5’GCTTCTCTGCCAAGGAGTCG3’ 
Exon (3b)     5’GCTGCTCTCGCCATGCTTC3’ 
 
Exon 1 (4a)     5’CTCCCAGGAACACCCTCTTC3’ 
Exon 1 (4b)     5’GCCCTGACGCCATCCTAAG3’ 
 
Exon 1 (5c)     5’CGCTGCTTCTCATTGGTC3’ 
Exon 1 (5d)     5’GCGGGAACGGTCAGAAA3’ 
 
Exon 1 (6a)     5’GAGCCGACTGTGCTCGACTC3’ 
Exon 1 (6b2)     5’ACGTGTCAGGACGGGACC3’ 
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Control primers for histone and RNAPII studies: 
 
B-globin Set #2 forward (coding region) 5’AGGCTGCTGGTTGTCTACC3’ 
B-globin Set#2 reverse (coding region) 5’ACACTCCACACACAGTCATGG3’ 
 
GAPDH Set#1 forward (promoter)  5’GTCCTCGATGTCCTTGGTGC3’ 
GAPDH Set#1 reverse #2 (promoter)  5’TGGAACAGGGAGGAGCAGAG3’ 
 
GAPDH Set #2 forward (coding region) 5’TCCAGTATCACTCCACTGACG3’ 
GAPDH Set #2 reverse (coding region) 5’CAGGTTGCACCATATCAAGGG3’ 
 
 
Chapter 3 
Control primers for P and PM cells lines: 
 
Cryaa Forward (Exon 1-2)   5’ATCTCTGAGGTCCGATCTAGCC3’ 
Cryaa Reverse (Exon 2-3)   5’GTAGCCATGGTCATCCTGCCTC3’ 
 
Slpi Forward (Exon 1)   5’TCACGGTGCTCCTTGCTCTG3’ 
Slpi Reverse (Exon 2-3)   5’CTTCCTCCACACTGGTTTCG3’ 
 
Expression control primers (Rt-PCR): 
 
mGAPDH forward (Lin)   5’AACTTTGGCATTGTGGAAGGGCTC3’ 
mGAPDH reverse (Lin)   5’TGGAAGAGTGGGAGTTGCTGTTGA3 
 
P1 expression primers (Rt-PCR): 
 
A1b forward     5’TGTGGCTGAGAAGTTCTGGTGG3’ 
A1b reverse     5’CGCACAGCATCCTGAAAGG3’ 
 
Exon 3b reverse   5’CTTCCCTTTGGTCCCAGTGACATGAA3’ 
 
Exon 6R reverse   5’AGACATGGCTGTCGTCCTTGAACT3’ 
 
Exon 1 forward   5’CTAGCTTGCGGTGGCATTAAGACT3’ 
 
De novo methyltransferase primers (Rt-PCR): 
 
DNMT3a forward  5’GTAACCTTCCTGGCATGAACA3’ 
DNMT3a reverse  5’ACTCTTGCAGCTCCAGCTTATC3’ 
 
DNMT3b forward  5’CTGAATTACACGCAGGACATGAC3’ 
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DNMT3b reverse  5’TCAGAGCCATTCCCATCATCTAC3’ 
 
 
Bisulfite primers: 
 
Sense: 201:    5’TAGGGTTTTTTTGAAGTTTATTTTGTA3’ 
Antisense BSS3:  5’CATCTAACTAACATCCTACCTAACAA3’ 
 
Sense 202C:   5’AGTTTTATTTGGGTAGTAAGGTTAATTTTAG3 
Antisense BSS4:  5’TCCTAATAAATAAAACACAAATAACTCC3’ 
 
Sense 203A1A:  5’AGAAGTTTTGGTGGGAAGTAG3’ 
Antisense BSS11:  5’CTAATATCTCACCTACCTCCTATATAACAC3’ 
 
Sense 203C:   5’ATTTTTGTTGATAGTTATTTGGAGTAGGTG3’ 
Antisense BSS10  5’CCCCAACCTAACTATAATTAATCATCTA3’ 
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